Journal of Credit Risk
ISSN:
1744-6619 (print)
1755-9723 (online)
Editor-in-chief: Linda Allen and Jens Hilscher
Sample selection bias in acquisition credit scoring models: an evaluation of the supplemental-data approach
Irina Barakova, Dennis Glennon and Ajay Palvia
Abstract
ABSTRACT
Models evaluating credit applicants rely on payment performance data, which is only available for accepted applicants. This sampling limitation could lead to biased parameter estimates. We use a nationally representative sample of credit bureau records to examine sample selection bias in account acquisition scoring models and to evaluate the effectiveness of the industry practice of using proxy payment performance for rejected applicants. Our results show that ignoring the rejected applicants significantly affects forecast accuracy of credit scores, while it has little effect on their discriminatory power. Finally, we document that validating scores only on accepted applicants can be misleading.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net