The case for reinforcement learning in quant finance
The technology behind Google’s AlphaGo has been strangely overlooked by quants
When Google’s Deepmind defeated the world’s top Go player in 2016, it was seen as a breakthrough for artificial intelligence. But the technique used to train AlphaGo, known as reinforcement learning (RL), has not gained much traction in finance, despite its ability to handle complex, multi-period decisions.
Igor Halperin, a senior quantitative researcher at Fidelity Investments, thinks it’s time for that to change: “RL is the best and most natural solution to most of the problems we have in quantitative finance,” he says.
He argues that nearly all problems in quantitative finance – including options pricing, dynamic portfolio optimisation and dynamic wealth management – can be solved with RL or inverse RL, or a combination of the two.
RL techniques work sequentially. At each stage, the algorithm observes the reward obtained in previous stages and proceeds accordingly, trying as many combinations of actions as possible to maximise a given reward function.
Halperin and Matthew Dixon, assistant professor at the Illinois Institute of Technology in Chicago, have published a research paper on the application of RL to dynamic wealth management.
They spotlight two techniques, which can be used either individually or in combination. The first is G-learning, a probabilistic extension of the Q-learning approach popularised by Deepmind. The advantage of G-learning – which is relatively new to finance, despite being well established in other fields – is that it can handle noisy environments and high dimensionality, which Q-learning struggles with.
For this reason, a previous effort by Gordon Ritter to apply Q-learning to dynamic portfolio optimisation was limited to a small number of assets.
“[Q-learning] couldn’t manage a portfolio of 500 stocks and it doesn’t cope well with noisy environments such as financial markets,” says Halperin.
RL is better than Black-Scholes and risk-neutral pricing in general, which makes more harm than good
Igor Halperin, Fidelity Investments
G-learning does not suffer from this problem. Given a reward function – in this case, the maximisation of wealth in a given time horizon – it can find the optimal combination of actions to reach a target outcome using the available historical data.
The second technique, which Halperin and Dixon introduce for the first time in their paper, is called generative inverse reinforcement learning, or GIRL. This works the opposite way to G-learning. GIRL takes the outcomes of strategies – the holdings and returns of a portfolio – and works backwards to infer what investment strategy the manager followed.
Halperin says the tools can be combined to create a robo-advisory solution. GIRL can be used to learn existing strategies, which G-learning can then optimally replicate for clients. The adviser can then potentially tailor solutions to clients’ objectives and level of risk aversion.
Other potential applications include minimising market impact in trade execution. The Royal Bank of Canada’s research centre, Borealis AI, has already used RL to develop a new trade execution system for the bank, called Aiden.
Halperin is also convinced RL can be successfully applied to price derivatives. “RL is better than Black-Scholes and risk-neutral pricing in general, which makes more harm than good,” he says. “Option pricing is all about managing risk, but the main assumption of risk-neutral formulation is that there is no risk, which is self-contradictory.”
Halperin and Dixon’s research is still in the experimental phase and has not been tested in practice, but the authors are confident about its effectiveness.
So why is RL missing from most quants’ existing toolkits? Matthew Taylor, associate professor of computer science at the University of Alberta, reckons it might be down to a scarcity of expertise. “In general, RL is not used much in finance, at least publicly,” he says. “There is a barrier to entry for financial institutions and there aren’t enough reinforcement learning professionals, or enough experts for all the potential.”
The work of Halperin, Dixon and others may fuel wider efforts to apply RL in finance.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe
You are currently unable to print this content. Please contact info@risk.net to find out more.
You are currently unable to copy this content. Please contact info@risk.net to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net
More on Our take
Why did UK keep the pension fund clearing exemption?
Liquidity concerns, desire for higher returns and clearing capacity all possible reasons for going its own way
UBS’s Iabichino holds a mirror to bank funding risks
Framing funding management as an optimal control problem affords an alternative to proxy hedging
Trump 2.0 bank supervision: simpler but no soft touch?
Republican FDIC vice-chair Travis Hill wants more focus on financial risk instead of process
Lots to fear, including fear itself
Binary scenarios for key investment risks in this year’s Top 10 are worrying buy-siders
Podcast: Alexei Kondratyev on quantum computing
Imperial College London professor updates expectations for future tech
Quants mine gold for new market-making model
Novel approach to modelling cointegrated assets could be applied to FX and potentially even corporate bond pricing
Thin-skinned: are CCPs skimping on capital cover?
Growth of default funds calls into question clearers’ skin in the game
Quants dive into FX fixing windows debate
Longer fixing windows may benefit clients, but predicting how dealers will respond is tough