Journal of Operational Risk
ISSN:
1744-6740 (print)
1755-2710 (online)
Editor-in-chief: Marcelo Cruz
Need to know
- Asymptotic normality assumptions are usually not verifiable for severity distributions
- Graphical and numerical of asymptotic normality vary widely on these distributions
- The normal approximation for parameter confidence intervals performs relatively well
Abstract
ABSTRACT
Operational risk models commonly employ maximum likelihood estimation (MLE) to fit loss data to heavy-tailed distributions. Yet several desirable properties of MLE (eg, asymptotic normality) are generally valid only for large sample sizes, a situation that is rarely encountered in operational risk. In this paper, we study how asymptotic normality does, or does not, hold for common severity distributions in operational risk models. We then apply these results to evaluate errors caused by failure of asymptotic normality in constructing confidence intervals around the MLE fitted parameters.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net