Journal of Risk Model Validation

Risk.net

Commodity value-at-risk modeling: comparing RiskMetrics, historic simulation and quantile regression

Marie Steen, Sjur Westgaard and Ole Gjølberg

ABSTRACT

Commodities constitute a nonhomogeneous asset class. Return distributions differ widely across different commodities, both in terms of tail fatness and skewness. These are features that we need to take into account when modeling risk. In this paper, we outline the return characteristics of nineteen different commodity futures during the period 1992-2013. We then evaluate the performance of two standard risk modeling approaches, ie, RiskMetrics and historical simulation, against a quantile regression (QR) approach. Our findings strongly support the conclusion that QR outperforms these standard approaches in predicting value-at-risk for most commodities.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to Risk.net? View our subscription options

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here