Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
The damped Crank–Nicolson time-marching scheme for the adaptive solution of the Black–Scholes equation
Christian Goll, Rolf Rannacher and Winnifried Wollner
Abstract
ABSTRACT
This paper is concerned with the derivation of a residual-based a posteriori error estimator and mesh-adaptation strategies for the space-time finite element approximation of parabolic problems with irregular data. Typical applications arise in the field of mathematical finance, where the Black-Scholes equation is used for modeling the pricing of European options. A conforming finite element discretization in space is combined with second-order time discretization by a damped Crank-Nicolson scheme for coping with data irregularities in the model. The a posteriori error analysis is developed within the general framework of the dual weighted residual method for sensitivity-based, goal-oriented error estimation and mesh optimization. In particular, the correct form of the dual problem with damping is considered.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net