Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
Application of the improved fast Gauss transform to option pricing under jump-diffusion processes
Takayuki Sakuma and Yuji Yamada
Abstract
ABSTRACT
Efficient kernel summation is an active research topic in machine learning and computational physics. Fast multipole methods (FMMs) in particular are known as efficient computational methods in these fields, but they have not gained much attention in computational finance. In this paper,we apply the improved fast Gauss transform (IFGT), a version of an FMM, to the computation of European-type option prices under Merton's jump-diffusion model. IFGT is applied to computing the nonlocal integral terms in partial integrodifferential equations, and our results indicate that IFGT is useful for the fast computation of option pricing under this model.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net