Journal of Risk Model Validation
ISSN:
1753-9579 (print)
1753-9587 (online)
Editor-in-chief: Steve Satchell
Value-at-risk forecasts with conditional volatility for structured products
Fen-Ying Chen
Abstract
ABSTRACT
The existing literature commonly concludes that generalized autoregressive conditional heteroskedasticity (GARCH) models provide better volatility forecasts in financial markets, using mean absolute squared errors or mean squared error criteria based on normality and serially uncorrelated assumptions for forecast errors. In contrast to the majority of the literature, this paper adopts the Diebold and Mariano test to reexamine the performance of GARCH models, allowing for forecast errors that can be non-Gaussian, nonzero mean, serially correlated and contemporaneously correlated for structured products. The results consistently show that the performance of GARCH-type models is not significantly better during the period of low oil prices or the period of high oil prices.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net