Journal of Operational Risk
ISSN:
1744-6740 (print)
1755-2710 (online)
Editor-in-chief: Marcelo Cruz
Dynamic operational risk: modeling dependence and combining different sources of information
Gareth W. Peters, Pavel Shevchenko, Mario V. Wüthrich
Abstract
ABSTRACT
In this paper, we model dependence between operational risks by allowing risk profiles to evolve stochastically in time and to be dependent. This allows for a flexible correlation structure where the dependence between frequencies of different risk categories and between severities of different risk categories as well as within risk categories can be modeled. The model is estimated using Bayesian inference methodology, allowing for a combination of internal data, external data and expert opinion in the estimation procedure. We use a specialized Markov chain Monte Carlo simulation methodology known as slice sampling to obtain samples from the resulting posterior distribution and estimate the model parameters.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net