Journal of Energy Markets
ISSN:
1756-3607 (print)
1756-3615 (online)
Editor-in-chief: Derek W. Bunn
Modeling conditional correlations for risk diversification in crude oil markets
Chia-Lin Chang, Michael McAleer, Roengchai Tansuchat
Abstract
ABSTRACT
This paper estimates univariate and multivariate conditional volatility and conditional correlation models of spot, forward and futures returns from three major benchmarks of the international crude oil markets, namely Brent,West Texas Intermediate and Dubai, to aid with the process of risk diversification. Conditional correlations are estimated using Bollerslev's constant conditional correlation model, Ling and McAleer's vector autoregressive moving average-generalized autoregressive conditional heteroscedasticity (VARMA-GARCH) model, the vector autoregressive moving average-asymmetric generalized autoregressive conditional heteroscedasticity (VARMA-AGARCH) model of McAleer et al and a dynamic conditional correlation model by Engle. The paper also presents the autoregressive conditional heteroscedasticity and generalized autoregressive conditional heteroscedasticity effects for returns and shows the presence of significant interdependencies in the conditional volatilities across returns for each market.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net