Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
Correlation matrix with block structure and efficient sampling methods
Jinggang Huang, Liming Yang
Abstract
ABSTRACT
Random sampling from a multivariate normal distribution is essential for Monte Carlo simulations in many credit risk models. For a portfolio of N obligors, standard methods usually require O(N2) calculations to get one random sample. In many applications, the correlation matrix has a block structure that, as we show, can be converted to a “quasi-factor” model. As a result, the cost to get one sample can be reduced to O(N). Such a conversion also enables us to check whether a user-defined “correlation” matrix is positive semidefinite and “fix” it if necessary in an efficient manner.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net