Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
Latin hypercube sampling with dependence and applications in finance
Natalie Packham, Wolfgang M. Schmidt
Abstract
ABSTRACT
In Monte Carlo simulation, Latin hypercube sampling (LHS) (McKay et al (1979)) is a well-known variance reduction technique for vectors of independent random variables. The method presented here, Latin hypercube sampling with dependence (LHSD), extends LHS to vectors of dependent random variables. The resulting estimator is shown to be consistent and asymptotically unbiased. For the bivariate case and under some conditions on the joint distribution, a central limit theorem together with a closed formula for the limit variance are derived. It is shown that for a class of estimators satisfying some monotonicity condition, the LHSD limit variance is never greater than the corresponding Monte Carlo limit variance. In some valuation examples of financial payoffs, when compared to standard Monte Carlo simulation, a variance reduction of factors up to 200 is achieved. We illustrate that LHSD is suited for problems with rare events and for high-dimensional problems, and that it may be combined with quasi-Monte Carlo methods.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net