Journal of Risk
ISSN:
1465-1211 (print)
1755-2842 (online)
Editor-in-chief: Farid AitSahlia
Bias and consistency of the maximum Sharpe ratio
Ross A. Maller, Robert B. Durand, Peter T. Lee
Abstract
ABSTRACT
We show that the maximum Sharpe ratio obtained via the Markowitz optimization procedure from a sample of returns on a number of risky assets is, under commonly satisfied assumptions, biased upwards for the population value. Thus investment advice, decisions and assessments based on the estimated Sharpe ratio will be overly optimistic. The bias in the estimator is shown theoretically and illustrated using a data set of Spiders and iShares. We obtain bounds on the difference between the sample maximum Sharpe ratio and its population counterpart and show that the sample estimator is consistent for the population value; thus the bias disappears asymptotically under some reasonable assumptions. However, the bias can be significant in finite samples and can persist even in very large samples. We demonstrate this with simulations based on portfolios formed from normally and t-distributed returns. As expected, the over-optimistic risk–return tradeoff predicted by the procedure is not reflected in corresponding good out-of-sample portfolio performance of the Spiders and iShares.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net