Journal of Risk
ISSN:
1465-1211 (print)
1755-2842 (online)
Editor-in-chief: Farid AitSahlia
Does higher-frequency data always help to predict longer-horizon volatility?
Need to know
- Direct forecasting models are precisely estimated but more sensitive to misspecification.
- Violations of serial independence affect iterated forecast more than direct forecast.
- Temporally aggregated longer horizon models are more robust to mean misspecification.
- The conditional autocorrelation in realized shocks is useful to see this trade-off.
Abstract
When it comes to forecasting long-horizon volatility, multistep-ahead iterated forecasts using higher-frequency data can be more efficient than one-step-ahead direct forecasts using lower-frequency data. However, small violations of model specification in either the volatility or expected return models are compounded in the forward iteration and temporal aggregation for the higher-frequency model. In this paper, we show that realized conditional autocorrelation in return residuals is a strong predictor of the relative performance of different frequency models of volatility. When the conditional autocorrelation is high, the higher-frequency model performs markedly worse than its lower-frequency counterpart. Empirically, we show that residual autocorrelation exists in the broad cross-section of stocks at any given point in time, and that this misspecification can substantially decrease the prediction performance of higher-frequency models. Comparing the monthly volatility predictions using daily and monthly data, we show a trade-off between the gains from higher-frequency data and the susceptibility of its multistep-ahead iterated forecasts to model misspecification.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net