Journal of Risk Model Validation
ISSN:
1753-9579 (print)
1753-9587 (online)
Editor-in-chief: Steve Satchell
![Risk.net](https://www.risk.net/sites/default/files/styles/print_logo/public/2018-09/print-logo.png?itok=1TpHrpuP)
Parametric and non-parametric estimation of value-at-risk
Deepak Jadhav and T. V. Ramanathan
Abstract
ABSTRACT
Value-at-risk (VaR) is one of the most common risk measures used in finance. The correct estimation of VaR is essential for any financial institution, in order to arrive at the accurate capital requirements and to meet the adverse movements of the market. We give a brief review of all of the existing parametric and non-parametric methods of estimating VaR. We have introduced some new non-parametric estimators for VaR. Comparison between these estimators are made using in-sample and out-of-sample backtesting techniques. It is found that one of the newly suggested nonparametric estimators works well compared with others, specifically for return data with high variability.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net