Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
Convergence of the stochastic mesh estimator for pricing Bermudan options
Athanassios N. Avramidis, Heinrich Matzinger
Abstract
ABSTRACT
Broadie and Glasserman (2004) proposed a Monte Carlo algorithm they named “stochastic mesh” for pricing high-dimensional Bermudan options. Based on simulated states of the assets underlying the option at each exercise opportunity, the method produces an estimator of the option value at each sampled state. We derive an asymptotic upper bound on the probability of error of the mesh estimator under the mild assumption of the finiteness of certain moments. Both the error size and the probability bound are functions that vanish with increasing sample size. Moreover, we report the mesh method’s empirical performance on test problems taken from the recent literature. We find that the mesh estimator has large positive bias that decays slowly with the sample size.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net