Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
The Brownian bridge E-M algorithm for covariance estimation with missing data
William Morokoff
Abstract
ABSTRACT
An algorithm is developed here to compute a maximum likelihood estimate of the covariance matrix for financial time series data for which a number of observations are unobserved or unreported. The data are returns on assets that are cumulative since the last observation of the asset, so that missing data information is included in the next reported observation. This paper describes an extension of a standard missing data method for covariance estimation - the expectation-maximization (E-M) algorithm - to handle the cumulative nature of the data through the use of a generalized Brownian bridge technique.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net