Podcast: Dario Villani on managing a hedge fund with machine learning
Duality’s CEO discusses key to machine learning success, and the influence of Renaissance’s Jim Simons
In this episode of Quantcast, Risk.net speaks with Dario Villani, co-founder and chief executive officer of Duality Group, a New York-based hedge fund, and co-winner of our inaugural Buy-side quant of the year award in 2016.
Duality uses machine learning-led algorithms to trade US stocks, exchange-traded funds and global futures.
Villani is a machine learning evangelist. He says it beats any traditional model for capturing the structure of complex systems, of which financial markets are an example, and believes Duality is one of the very few investment firms that uses it not just for data manipulation, trade execution or optimisation, but also for forecasting.
Villani discusses Duality’s use of machine learning, explains his against-the-tide views on interpretability and overfitting, and shares the lessons he learned from Jim Simons, co-founder of legendary quant hedge fund Renaissance Technologies.
Index
00:00 Introduction
02:03 Duality’s investment strategy and why it uses machine learning
06:50 Data proliferation
11:02 How Duality uses machine learning
15:33 Interpretability and overfitting
29:40 How to spot flawed ML strategies
36:46 Mean field games
42:00 Operational challenges and talent acquisition
52:05 Lessons from Jim Simons
54:22 Physics and finance
To hear the full interview, listen in the player above, or download. Future podcasts in our Quantcast series will be uploaded to Risk.net. You can also visit the main page here to access all tracks, or go to the iTunes store or Google Podcasts to listen and subscribe.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe
You are currently unable to print this content. Please contact info@risk.net to find out more.
You are currently unable to copy this content. Please contact info@risk.net to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net
More on Cutting Edge
A comparison of FX fixing methodologies
FX fixing outcomes are mostly driven by length of calculation window
Quantum cognition machine learning: financial forecasting
A new paradigm for training machine learning algorithms based on quantum cognition is presented
Backtesting correlated quantities
A technique to decorrelate samples and reach higher discriminatory power is presented
A hard exit threshold strategy for market-makers
A closed-form solution to derive optimal stop-loss and profit-taking levels is presented
Pricing share buy-backs: an alternative to optimal control
A new method applies optimised heuristic strategies to maximise share buy-back contracts’ value
CVA sensitivities, hedging and risk
A probabilistic machine learning approach to CVA calculations is proposed
Podcast: Alvaro Cartea on collusion within trading algos
Oxford-Man Institute director worries ML-based trading could have anti-competitive effects
Podcast: Lorenzo Ravagli on why the skew is for the many
JP Morgan quant proposes a unified framework for trading the volatility skew premium