Adjusting value-at-risk for market liquidity
Liquidity remains a key risk factor in many portfolios, but quantifying it remains an open question. Here, David Cosandey offers a new macroeconomic approach to quantifying liquidity risk based upon trading volume, and incorporates it into VAR, testing his model against empirical data
The Asian and Russian crises of the late 1990s, and the Long-Term Capital Management (LTCM) debacle, demonstrated the need to better understand market liquidity risk. Several methodologies have been suggested that include market liquidity effects in value-at-risk. Some of them rely on bid-ask spreads (Bangia et al, 1999, and Monkkonen, 2000). These approaches raise the difficulty of gathering long time series of bid/ask spreads for different portfolio sizes and securities. Moreover, they are
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe
You are currently unable to print this content. Please contact info@risk.net to find out more.
You are currently unable to copy this content. Please contact info@risk.net to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net
More on Cutting Edge
Overcoming Markowitz’s instability with hierarchical risk parity
Portfolio optimisation via HRP provides stable and robust weight estimates
Funding arbitrages and optimal funding policy
Stochastic control can be used to manage a bank’s net asset income
Quantum two-sample test for investment strategies
Quantum algorithms display high discriminatory power in the classification of probability distributions
Market-making in spot precious metals
A market-making framework is extended to account for metal markets’ liquidity constraints
Choosing trading strategies using importance sampling
The sampling technique is more efficient than A-B testing at comparing decision rules
A comparison of FX fixing methodologies
FX fixing outcomes are mostly driven by length of calculation window
Quantum cognition machine learning: financial forecasting
A new paradigm for training machine learning algorithms based on quantum cognition is presented
Backtesting correlated quantities
A technique to decorrelate samples and reach higher discriminatory power is presented