
Adjusting value-at-risk for market liquidity
Liquidity remains a key risk factor in many portfolios, but quantifying it remains an open question. Here, David Cosandey offers a new macroeconomic approach to quantifying liquidity risk based upon trading volume, and incorporates it into VAR, testing his model against empirical data

The Asian and Russian crises of the late 1990s, and the Long-Term Capital Management (LTCM) debacle, demonstrated the need to better understand market liquidity risk. Several methodologies have been suggested that include market liquidity effects in value-at-risk. Some of them rely on bid-ask spreads (Bangia et al, 1999, and Monkkonen, 2000). These approaches raise the difficulty of gathering long time series of bid/ask spreads for different portfolio sizes and securities. Moreover, they are
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe
You are currently unable to print this content. Please contact info@risk.net to find out more.
You are currently unable to copy this content. Please contact info@risk.net to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net
More on Cutting Edge
The WWR in the tail: a Monte Carlo framework for CCR stress testing
A methodology to compute stressed exposures based on a Gaussian copula and mixture distributions is introduced
Estimating mean reversions in interest rate models
The speed of factors’ mean reversion in rate models is estimated
Auto-encoding term-structure models
An arbitrage-free low-dimensionality interest rate model is presented
The relativity of the fractional Gamma Clock
Bank of America quant expands his Gamma Clock model with a fractional Brownian motion
A market-making model for an options portfolio
Vladimir Lucic and Alex Tse fill a glaring gap in European-style derivatives modelling
Option market-making and vol arbitrage
The agent’s view is factored in to a realised-vs-implied vol model
Degree of influence 2024: volatility and credit risk keep quants alert
Quantum-based models and machine learning also contributed to Cutting Edge’s output
Overcoming Markowitz’s instability with hierarchical risk parity
Portfolio optimisation via HRP provides stable and robust weight estimates