Journal of Risk
ISSN:
1465-1211 (print)
1755-2842 (online)
Editor-in-chief: Farid AitSahlia
Better risk and performance estimates with factor-model Monte Carlo
Yindeng Jiang and R. Douglas Martin
Abstract
A common problem in asset and portfolio risk and performance analysis is that the manager has such a short history of asset returns that risk and performance measure estimates are quite unreliable. But the manager has available long histories of many risk factors and can use a subset of them to construct a high-R-squared risk-factor model for the asset returns. We introduce a simple method of simulating from such a factor model that yields considerably more accurate risk and performance measures, and show that it is important to use a statistically justified method of choosing the risk factors. The resulting factor-model Monte Carlo method works well by adequately reflecting the nonnormality of the factor and asset returns, and by borrowing strength from the correlation between the risk factors and the asset returns.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net