Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
Sampling Student's T distribution – use of the inverse cumulative distribution function
William T. Shaw
Abstract
ABSTRACT
With the current interest in copula methods, and fat-tailed or other non-normal distributions, it is appropriate to investigate technologies for managing marginal distributions of interest. We explore “Student’s” T distribution, survey its simulation, and present some new techniques for simulation. In particular, for a given real (not necessarily integer) value n of the number of degrees of freedom, we give a pair of power series approximations for the inverse, F−1 n , of the cumulative distribution function (CDF), Fn.We also give some simple and very fast exact and iterative techniques for defining this function when n is an even integer, based on the observation that for such cases the calculation of F−1 n amounts to the solution of a reduced-form polynomial equation of degree n − 1. We also explain the use of Cornish–Fisher expansions to define the inverse CDF as the composition of the inverse CDF for the normal case with a simple polynomial map. The methods presented are well adapted for use with copula and quasi-Monte-Carlo techniques.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net