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Application of MFMC to 
spread option valuation

In this Masterclass article, John Breslin, Les Clewlow, Calvin Kwok, Chris 

Strickland and Matthias Pfau continue their discussion of the multi-factor  

multi-commodity modelling framework, by considering its practical  

application to the valuation of complex spread options

H Spread options are used in many markets for trading 
and risk management. One of the main activities in energy 
markets is trading the differences between individual 
commodities. For example, these differences can be based on 
the spread between prices in different calendar months for the 
same commodity (calendar spreads), between prices of the 
same commodity at different locations (locational spreads), 
between prices of crude oil and refined products such as 
heating oil (crack spreads), or between the price of power and 
the fuel used to generate it (spark spreads). 

For some simple European options under very restrictive 
distributional assumptions, there exist closed-form solutions 
for the valuation of options on these spreads. For examples, 
see Ravindran (1995), Kirk (1995), Hikspoors and Jaimungal 
(2007). However, despite their importance and widespread 
use, there does not exist a consistent framework for pricing 
and hedging general spread options in a modelling framework 
that is relevant for energy prices. For this reason, and also for 
cases where the spread option payoff is relatively complex, a 
Monte Carlo simulation approach to valuation is often the 
only practical method available.

As noted in our first multi-factor multi-commodity (MFMC) 
article, if enough data is available, then using a general MFMC 
model for the price dynamics allows us to account for a very 
rich set of modelling assumptions. In this article, we describe 
how the MFMC model can be used as the basis of a Monte 
Carlo simulation for the valuation of complicated spread 
options that depend on a basket of energy prices.

Firstly, we describe the basic principle of spread options. The 
simplest European spread option is an option on the difference 
between two underlying assets, which have values at time T 
denoted by S1(T ) and S2(T ). Similar to the payoff for a simple 
European call option the payoff of the simple spread option at 

maturity T is given by:

	
Payoff  = − −[ ]max ( ) ( ) ,S T S T K2 1 0

	
(1)

where K is the strike price of the option. If the difference 
in the asset prices is greater than K, then the holder would 
exercise the option, otherwise it will expire worthless. Of 
course, the payoff definition need not be as simple as the 
difference between the two asset prices and a strike price. 

Many market participants price power tolling agreements 
and financial heat rate options, as well as view generation 
assets as European spread options, or as a strip of such options. 
For example, a standard approach to modelling a single fuel 
(such as gas) generation asset is to use a strip of hourly spread 
call options with the following payout:

	
Payoff  = − × −[ ]max ( ) ( ) ( ) ,Power T Gas T HR T K 0

	
(2)

where:
•  Power(T ) defines the power price at time T;
•  Gas(T ) defines the contemporaneous gas price;
•  �HR(T ) is the heat rate that defines the efficiency factor of 

the plant;
•  K is used to account for the costs of generation.

In general, a spread option refers to an option where any 
number of commodity prices or indices can be combined 
to define the payoff calculation. Many energy producers or 
consumers are exposed to a basket of commodities. Long-term 
interruptible gas supply contracts – which are common in 
Europe for pricing natural gas, for example – often depend on 
a basket of commodities such as gas oil, fuel oil and coal, and 
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so hedging contracts that play on the spread between the gas 
price and the basket of fuels are common. One reason for this 
type of arrangement is that some gas markets can be relatively 
illiquid, especially where they are dominated by a handful of 
gas producers, and so using reference prices from more liquid 
markets (such as oil) provides greater price transparency and 
minimises the risk of price manipulation.

As an example, we consider the spread between the gas 
forward price (based on the UK’s National Balancing Point 
(NBP)) and the forward value of an index of a basket of 
fuels. The fuels we consider are gas oil (GO) and fuel oil 
(FO). An additional complication is that the spread payoff 
involves the sum of the spread between the gas price and the 
fuel index over a specified number of delivery months. The 
payoff is defined as:
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where:
• T is the expiry date of the option;
• Mi is the gas volume for the ith delivery month (i=1, …, n) 
expressed in megawatt hours (MWh);
• FNBP (T,Ti) is the forward NBP gas price for the delivery 
month Ti on date T expressed in €/MWh;
• A(T,Ti) is the forward value of the fuel index for month Ti 
on date T expressed in €/MWh. The sum is taken over all 
delivery months. 

The fuel index used in this example is given by 
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where P0 , wi, ci, GO0, and FO0 are constants. The first 
constant, P0, can be thought of as the strike price of the NBP 
gas component of the option; if the two terms relating to the 
other fuels were set to zero, then equation (3) would reduce to 
a strip of simple call options on NBP gas. 

The weightings, wi, determine the relative contribution of 
the price of the corresponding fuel to the index, while the 

constants GO0 and FO0 represent a reference price for each of 
these commodities. The constants ci are conversion factors to 
convert all prices into the same units. The terms F TX

*/*/*/*( )  
denote an averaged price for the fuel X (either GO or FO). 
The superscript */*/*/* defines a convention used to calculate 
average values from the historical prices of the commodity. 
From the perspective of the purchaser of these contracts, the 
averaging provides a level of certainty about the price they 
will be faced with when they take delivery of the commodity. 
This is discussed in more detail below. Each commodity can 
have its own averaging method.

Essentially, the averaging method is used to define seasonal 
averages, where a season can be defined differently for each 
commodity depending on its particular characteristics. The 
notations for the averaging methods have the following format:

a/b/c/d,
where:
• a is a reference month (between 1 and 12) that defines the 
start of an averaging cycle (and is not relevant when b=1);
• b is the number of months with the same value, which 
defines a cycle length.

The average value calculated will be used for the reference 
month and the following b –1 months. The parameter b must 
be one of 1, 2, 3, 4, 6, or 12. 

Note that if b =1 then the parameter a is not relevant, as 
each cycle is only one month in length, i.e. the average is 
calculated for each month;
• c represents the number of monthly prices used to calculate 
the average;
• d is the lag between the first month in the current cycle and 
the last month in the average.

Clearly, the calculation of the spread option payoff defined 
in equations (3) and (4) is not straightforward, and deriving an 
analytical expression for valuing such an option is not possible. 
The only option left in such a case is to use a Monte Carlo-
type simulation to calculate the expected payoff and hence 
derive a value for the option. 

This also provides an additional benefit, as a distribution of 
the option payoffs can be obtained, which can be used for risk 
management purposes. The MFMC framework is perfectly 
suited for tackling this example – since it can capture the 

For example, if the current month is April 2008 and the averaging is defined by 3/2/4/2, we then have the following:
• The cycles start in March;
• �Two consecutive months have the same average value. Together with a=3, it implies that the following month couples have the same 

values and define the following cycle: March/April, May/June, July/August, September/October, November/December, January/February 
for the next year. For this example, our April 2008 average will be the same as for March 2008;

• There are four months in the average calculation;
• �The first month in the current cycle is March and the lag is two months. This means that the last month in the average is January 2008. 

As there are four months in the average, it means that October 2007, November 2007, December 2007 and January 2008 are used to 
calculate the average value for the March/April 2008 component of the cycle.

Defining seasonal averages
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dynamics of each commodity from the observed market data, 
it can capture the correlations between the commodities, 
and it allows for the simulation of the prices necessary for the 
complex payoff calculation and averaging methods.

To illustrate the use of the MFMC model for this problem, 
we consider an option on 12 monthly deliveries as defined by 
the following dates:

T1. Option dates

Valuation date May 1, 2008

Expiration date October 1, 2008

Delivery start month October 2008

Delivery end month September 2009

The parameters used in this example to define equations (3) 
and (4) are as in table 2.

Finally, the averaging methods used for each of the fuels 
are in table 3.

The constants GO0, and FO0 are set equal to the average 
forward price over the delivery months. The constants c1 and 
c2 are set such that when applied to the average forward price 
over the delivery months makes the result equal to the average 
NBP forward price over those months. The weights are 

typical values for fuel indices where gasoil makes a relatively 
larger contribution than fuel oil.

As described in our previous article, to simulate the 
commodity prices using the MFMC model we require 
a forward curve for each commodity, a set of volatility 
functions for each commodity and a correlation matrix for the 
Brownian shocks. In figure 1, we plot the forward curves used 
in this example for each commodity. In figure 2, we plot the 
first three volatility factors for each commodity.

While the definition of the option used in this article is quite 
complex, the key result of the MFMC valuation is simply 
the expected value of the option. For risk management, 
another key output is the distribution of values. For trading 
these instruments, the expected value is obviously of prime 
importance, as it allows the buyer or seller to determine the 
true value for the option, taking into account the volatility 
and correlations of the underlying commodities. 

A natural question to ask then is how sensitive is the value to 
different modelling assumptions? To answer this, we have set 
up four valuation models. These are described in table 4.

The single factor models are derived by calculating the single 
factor for each commodity that is equivalent to the three factors 
used in the multi-factor simulations. In table 5 we show the 
expected value for each case, using 10,000 simulations.

0

100

90
80

70

60

50

40

30

20

10

Oct 2008 Nov 2008 Dec 2008 Jan 2009 Feb 2009 Mar 2009 Apr 2009 May 2009 Jun 2009 Jul 2009 Aug 2009 Sep 2009

Oct 2008 Nov 2008 Dec 2008 Jan 2009 Feb 2009 Mar 2009 Apr 2009 May 2009 Jun 2009 Jul 2009 Aug 2009 Sep 2009

£/
th

er
m NPB

1,180

1,160

1,140

1,120

1,100

1,200

Maturity

G
as

 o
il 

($
/T

on
ne

) Fuel oil ($/G
allon)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Gas oil
Fuel oil

F1. Forward curves used for the simulation
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T2. Option parameters

Mi 1 GO0 748

K 0 FO0 2.29

P0 0

w1 60% c1 1.55

w2 40% c2 504

T3. Averaging methods

Fuel Method

GO 1/3/6/1

FO 1/3/6/1

NBP Factor 1

Factor 2

Factor 3

100 200 300 400 500

-10

-5

0

5

10

15

20

%

Maturity (days)

F2.1. Volatility factors for gas forward price
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Big splash

There are several points to note here. First, there is a 
significant difference between the full MFMC model (Case 
3) compared to Case 1. This is expected since Case 1 does 
not simulate any variation in the price of the basket of fuels 
and so the true value in the spread option is not captured. 
The difference between Case 2 and Case 3 is also reasonably 
significant (2%), which indicates that modelling the dynamics 
of these commodities in a full multi-factor framework is 
important to capture the value and risk accurately. Finally, 
we note the large difference between the Case 4 (with 
correlations between the commodities set to zero) and Case 
3 results (13%). This highlights the importance of including 
correlations in the model, especially for an instrument like the 
one being considered here, where the payoff depends on the 
underlying prices of multiple correlated commodities.

For Monte Carlo simulations, it is also of interest to look 
at the rate of convergence of the results. In figure 3 we show 
the values for each test case as a function of the number of 
simulations. It is clear that for examples like this where several 
commodities are being considered then a large number of 
simulations is required to sufficiently sample the problem 
space. This is especially noticeable for the Case 4 results, 
which appear to require significantly more simulations for 

the result to converge. Due to the zero correlations between 
commodities in this case, the simulated values can explore a 
larger volume in the problem space and so it requires more 
simulations to sample it sufficiently. Of course methods such 
as antithetic resampling can improve the efficiency of Monte 
Carlo simulations, or distributed computation can be used if 
the hardware is available. 
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T5. Results for the four test cases

Case Value (€)

1 857.43

2 1458.46

3 1425.66

4 1240.52

T4. Cases used to analyse model performance

Case Description

1 Use a single factor model for NBP and deterministic (forward) prices for the other fuels

2 Use a single factor model for all commodities

3 Use the full MFMC model for all commodities

4 Same as Case 3, but with correlations between all commodities set to zero


