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Cutting edge: Option pricing

Model calibration with neural networks
The speed with which the calibration of a pricing model can be performed influences the usability of that model. Andres
Hernandez shows calibration can be performed significantly faster, regardless of the chosen model, using artificial neural
networks; this removes calibration speed as a factor when considering a model’s usability

T
here are several aspects that need to be taken into account when

considering the applicability of a pricing model. One that is of

central, practical importance is the speed with which it can be

calibrated. A model might be deemed preferable to another on financial

grounds, but if it takes too long to calibrate (what constitutes ‘too long’ is

dependent on the application), then the model becomes impractical.

Of course, the decision may not always be very clear cut. In some

instances, the model could be acceptable from a technical point of view, but

only after compromises have been made on the financial side, eg, by limit-

ing the number of instruments used during calibration, or by using approx-

imations, which can lead to inaccuracies for certain parameter regions.

The purpose of this article is to showcase an alternative calibration

method that will remove from consideration the time constraint imposed

on a model. By using artificial neural networks (ANNs), the vast majority

of the calculation workload can be offloaded to a separate training process;

this, by its very nature, is allowed to run offline, while the online calibration

runs quickly, and is equivalent to multiplying a few small-sized matrices.

As will be seen, the splitting of the calibration problem into a training

phase and an evaluation phase is possible, with the fulcrum of the exercise

being the generation of a large training set, such that the neural network

can generalise from it.

As an added benefit (not addressed in this article), neural networks, being

fully differentiable functions, can also provide model parameter sensitiv-

ities to market prices, potentially informing us when a model should be

recalibrated.

This article is structured as follows. First, we lay out the calibration

process, such that the problem to be solved is made explicit. We then detail

how neural networks can be used to approach the calibration problem.

Next, we provide an example use of the previously discussed methodology,

applying it to the simple calibration of a Hull-White model with constant

parameters. Finally, we provide some closing comments and perspectives

for future work.

Calibration problem
For a given modelM , an instrument’s theoretical quote will be denoted by:

Q.�/ DM .� I �; �/ (1)

where � represents the model parameters, � represents the identifying

properties of the particular instrument, eg, maturity, day-count conven-

tion, etc, and � represents other exogenous factors used for pricing, eg,

an interest rate curve. Equation (1) can represent the expectation under

a risk-neutral measure, or some other similar procedure, the nature of

which will not be relevant for this discussion.

The modelM has n parameters that need to be calibrated, and some or

all of them may have constraints:

� 2 S � R
n (2)

Model calibration is the process by which the model parameters are

adjusted so as to ‘best’ describe a set of N relevant market quotes:

fQmktg D fQmkt
i j i D 1; : : : ; N g; f�g D f�i j i D 1; : : : ; N g (3)

In general, the question of which instruments should be considered is not

straightforward, and arguments can be made for the inclusion or exclusion

of a particular quote, eg, liquidity concerns, or to avoid overfitting to a par-

ticular maturity region. However, it is also possible the set of instruments

is reduced for the practical concern of reducing the calibration time. The

purpose of this exercise is to discard this concern, and instead allow the

set to be chosen on purely financial and mathematical grounds, although

weights can be adjusted as deemed necessary.

It was mentioned the model parameters were chosen to best fit the given

quotes. The concept of ‘best’ is measured by a cost function; this will be

particular to a problem, and, like the decision of which quotes to include,

there are different choices for it. In addition, the decision of which cost

function to adopt, as in the quote set, should no longer be advised by the

practical concern of reducing calibration time.

The calibration problem consists, then, in finding the parameters � that

minimise the cost function:

� D arg min
��2S�Rn

Cost.��; fQmktgI f�g; �/ D �.fQmktgI f�g; �/ (4)

The calibration problem is now seen as a function with N arguments and

n outputs:

� W RN 7! S 2 R
n (5)

It is this function,� , that will be approximated by a neural network.

The different models and cost functions used in quantitative finance

present a great variety of conditions, from convex cost functions to more

complex structures with multiple local optima present, and for which a

global optimiser may be required in order to reach an acceptable solution.

As with almost every other aspect of model calibration, the choice of opti-

miser and the acceptability of an optimisation procedure may be informed

by financial considerations (eg, the error being below a financially accept-

able threshold), but it may also be influenced by computation time.As with

selecting the model, the set of calibration instruments and the form of the

cost function, the consideration of computation time should be discarded

in the current exercise.

For particular cases, the optimisation problem might be ill defined or

result in parameters that vary wildly. This can be grounds for concern, but

it will not be addressed in this article. That is because it is not particular to

the approach outlined here, nor is it relevant to the purpose of this article,

which, once again, is to promote the move away from obtaining calibrated

parameters via an optimisation – which can be very time consuming –

and replace it with a neural network, which, regardless of the model being

represented, should be a quick operation.
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The function � need not be smooth everywhere, and it may in fact

contain a finite number of discontinuities; but, in general, it is expected to

be continuous and smooth almost everywhere. As will be mentioned later,

the mathematical basis for the representation of a function by a neural

network is the continuity of such a function (Hornik 1991).

Calibration with neural networks
ANNs are a family of machine-learning techniques that have now become

ubiquitous in many state-of-the-art solutions for image and speech recog-

nition. In finance, they are widely used for time series forecasting (Connor

et al 1994; Frank et al 2001) and sentiment analysis (Bollen et al 2010).

While the uses to which they are put are now very diverse, they are, in the

end, simply approximating a function with many inputs and some outputs.

ANNs have been used for model calibration as well (see, for example,

Klos & Waszczyszyn 2011; Mareš et al 2015; Novák & Lehký 2006; Zaw

et al 2009; Zhang et al 2010). However, as far as the author is aware,

ANNs have not been used to calibrate financial models. In this context,

we face the difficulty of not modelling a physical system, which we could

directly sample as often as required in order to build a big enough sample

set. In addition, we do not have a mathematical description of the system,

which empirical evidence could show to be accurate to the desired degree,

and which we could confidently use to generate new samples. It is the

acquisition of that bigger training set via statistical sampling that is the

main contribution of this article.

There are, of course, other approaches available to approximate a func-

tion, even within machine learning. However, neural networks have been

very successful in approximating the functions of many inputs. In terms of

(5), when N is large, neural networks excel; this is where other methods

can falter, eg, interpolation tables.

We will be very pragmatic and not attempt to find the set of financial

models whose � function can be approximated via a neural network.

Instead, with the confidence bestowed by the universal approximation

theorem (Cybenko 1989; Hornik 1991), we will assume it can, in fact, be

done, and then attempt to do it.

It is expected different models will be best proxied by different neural

networks. In particular, the number of layers and neurons per layer will

change from application to application. However, regardless of the topol-

ogy being used, once a suitable neural network has been found, the cali-

bration problem will be split into two phases: a supervised training phase,

which will be performed offline, and an evaluation phase, which will give

the model parameters for a given input, and which will be extremely fast.

What is gained by calibrating a model with neural networks is the

offloading of the computationally intensive part into an offline process,

which in financial cases can take hours or days, depending on the avail-

able resources and the model itself. The calculations performed live, ie,

when the calibrated parameters are required, are akin to multiplying a few

matrices, which any computer will be able to handle quickly.

For the supervised training phase, the task is again split into two parts:

(1) the collection of a large enough training set and (2) the actual training,

validation and testing. The preparation of the training set will be the crucial

part of this exercise. The training set needs to be large enough to allow

learning of the model’s peculiarities, ie, so as not to overfit. The size and

quality of the example set will directly affect the neural network’s ability

to generalise the obviously limited set of examples into new situations.

Taking all the available historical values and calibrating them would

give a set of examples for which the output is known for a given input, and

which can then be used for training. The disadvantage of this approach is

twofold: first, the training set is unlikely to be large enough, and second,

the possibility of backtesting to historical data will be compromised.

Since a good approximation for the inverse of� is known (this is simply

the regular valuation of the instruments under a given set of parameters),

it is the model itself that will serve as the basis of the training set:

��1.� I f�g; �/ �M .� I f�g; �/ D fQg (6)

This means we can generate new examples simply by generating random

parameters � , albeit with some complications that need to be considered.

The first complication is that, if the model requires exogenous factors �,

then these will also need to be generated randomly, and likely correlated

properly with the parameters for the example set in order to be meaningful.

A second complication may arise from the inability of a model to per-

fectly fit all relevant market quotes. In the example presented below, it

is observed that generating random noise, properly correlated with the

exogenous � and parameters � , improves performance during in-sample

backtesting.

Next, the historical data needs to be collected.A portion of it will be used

purely to serve as an out-of-sample backtest, while another part will be

needed to estimate the correlation between the parameters and, if required,

the exogenous factors and errors.

The process described above already assumes a neural network topology

has been proposed. It is difficult a priori to determine what makes a good

topology. So, we first collect a large training set, and then we try out

different configurations.

Even if we limit the discussion to feed-forward networks (FNNs) and

convolutional neural networks (CNNs), the number of options is large:

number of layers, neurons per layer, regularisation procedure, optimisation

method, activation function, number of training iterations, etc. Setting

these so-called hyper-parameters judiciously is important because they

can have a significant impact on the learning process.

The process of hyper-parameter optimisation is a recurring problem

in neural networks, and there are standard approaches to it that can give

good results. The simplest examples are grid search and manual search.

In the former, a multidimensional grid of parameters is prepared and the

configuration with the best test results is picked.

In the current exercise, a mixture of grid and manual search is used. As

each set of hyper-parameters requires a new neural network to be trained,

a grid search can spend a significant amount of time pursuing avenues

unlikely to bear fruit. After a limited grid search, a manual inspection

selects the areas on which a further grid search will concentrate. This is

repeated in an iterative process.

There exist, of course, more developed approaches, eg, random search

(Bergstra & Bengio 2012), and more formal search strategies (Snoek

et al 2012). In the following example, the combination of grid and man-

ual search mentioned above produces good results; however, in future

applications these more sophisticated approaches could pay off.

Example: Hull-White
As an example, the single-factor Hull-White model calibrated to 156

sterling at-the-money (ATM) swaptions will be used:

drt D .�.t/ � ˛rt / dt C � dWt (7)
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where ˛ and � are constant and shared across all option maturities. �.t/

is picked to replicate the current yield curve y.t/.

The problem is then:

.˛; �/ D �.fQmktgI f�g; y.t// (8)

This is a problem shown in QuantLib’s Bermudan Swaption example,1

available both in CCC and Python.

The collected historical data comprises lognormalATM volatility quotes

for sterling from January 2, 2013 to June 1, 2016. The option maturities

are 1 to 10 years, plus 15 and 20 years, while the swap terms are from 1

to 10 years, plus 15, 20 and 25 years. This gives a total of 156 swaptions

to be used, equally weighted, as calibration instruments.

For the yield curve, the six-month (6M) tenor Libor curve is used. This

is bootstrapped using a monotonic cubic spline interpolation of the zero

curve and built on top of the overnight index swap curve. Only forward

rate agreements and swaps are used to bootstrap the curve. When serving

as an input to the neural network, the yield curve is discretely sampled at

44 points: 0, 1, 2, 7 and 14 days; 1 to 24 months; 3 to 10 years; plus 12,

15, 20, 25, 30, 40 and 50 years.

A Levenberg-Marquardt local optimiser is used to minimise the equally

weighted average of squared net present value (NPV) differences.2 The

calibration is done twice, with different starting points: first, a default

starting point with ˛ D 0:1 and � D 0:01, and second, the calibrated

parameters from the previous day using the default starting point. The

results for the default calibration are shown in figure 1.

Once the calibration history is available, the next task is to produce a

large enough data set to train a neural network. We start with three-and-

a-half years of historical daily data, which comprises only 891 individual

examples. What is needed is about two orders of magnitude larger, so just

approaching a data provider will not be sufficient. Instead, a statistical

model of the sample set is created, and then an artificial training set is gen-

erated by sampling from this model. While forming the statistical model,

it is observed that scaling the input to have zero mean and unit variance

improves the training.

The training set is generated in the following manner:

� Obtain errors for each calibration instrument for each day.

�As parameters are positive, take the natural logarithm on the calibrated

parameters.

� Rescale yield curves, parameters and errors to have zero mean and

variance 1.

�Apply dimensional reduction via principal component analysis (PCA) to

the yield curve, and keep parameters for given explained variance (99.5%).

�Calculate covariance of rescaled log parameters, PCA yield curve values

and errors.

� Generate random, normally distributed vectors consistent with given

covariance.

� Apply inverse transformations: rescale to original mean, variance and

dimensionality, and take exponential of parameters.

� For each sample, select a reference date randomly from the set used for

covariance estimation.

1 QuantLib: a free/open-source library for quantitative finance (www
.quantlib.org).
2 This is the default calibration objective in QuantLib, but it can be easily
changed to have different weights or a different value indicator

1 Calibrated (a) ˛ and (b) � using the default starting point
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� Obtain implied volatility for all calibration instruments and apply

random errors to results.

For the hyper-parameter optimisation, the sample set was divided into

three parts: 60% served as the training set, 20% served as the cross-

validation set and the remaining 20% served as a testing set. The training

set was used during the intra-epoch training. The cross-validation set was

used to measure the inter-epoch improvement, including the possibility of

stopping early. The testing set was used to pick the best configuration.

As mentioned above, the hyper-parameter optimisation was a mixture

of grid and manual search, with a truncated grid search over the number of

layers, neurons per layer (with all hidden layers having the same number

of neurons), the learning rate, dropout rate, the activation function and

even the optimiser.

The hyper-parameter optimisation led to the FNN detailed in figure 2. It

has four hidden layers, each with 64 neurons using an exponential linear

units activation function (Clevert et al 2015). A Nesterov Adam optimiser

(Dozat see 2015) was used to train it, with a learning rate of 0:001. A

standard 500 epochs were used for training, with a sample set of 150,000

samples; however, an early stopping strategy was applied, whereby if no

improvement on the cross-validation loss objective was detected for 50

epochs, then learning would be stopped. A dropout rate of 15 was used in

all layers.

Different variations of CNNs were tried, but as the input matrix of13�12

is relatively small, no significant improvement was obtained over the best

FNN and training time increased significantly. CNNs could become useful

for other problems, eg, involving a volatility surface.

Two different neural networks were trained using (1) a sample set pro-

duced with a covariance matrix and estimated with historical data from

January 2013 to June 2014 (40% of the historical data), and (2) a sec-

ond sample set using data from January 2013 to June 2015 (�73% of the
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2 FNN used for Hull-White calibration
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3 Correlation up to June 2014 (average volatility error)
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4 Correlation up to June 2015 (average volatility error)
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historical data). For training, the sample set was split into 80% training set

and 20% cross-validation. The testing set will be the historical data itself,

which will then serve as backtesting for the model.

The comparison between the model and the calibrations with an opti-

miser and the two starting points are presented in figures 3–6. The covari-

ance matrix used in the production of the training set has important conse-

quences during backtesting. It is observed that a trained model will behave

well out-of-sample only for a period of about six months.

5 Correlation up to June 2014 (NPV mean square error)
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6 Correlation up to June 2015 (NPV mean square error)
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7 Calibration time with local optimiser and default starting point
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2.396

1.737

1.079

[s
]

Until now, the speed of the calibration has not been mentioned. The rea-

son for this is the one-factor Hull-White model was picked not because it

is considered slow to calibrate, but rather for the ease of calibration. How-

ever, while the Hull-White model is generally considered fast to calibrate,

it is still instructive to appreciate the difference in calibration speed. The

calibration starting from default parameters is presented in figure 7. The

average time required is 0.864 seconds, with a standard deviation of 0.738

seconds. However, if one only takes from October 1, 2013 onwards into
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consideration, the average drops to 0.563 seconds, with a standard devia-

tion of 0.124 seconds. In contrast, the neural network on average requires

0.0025 seconds, with a standard deviation of 0.0004 seconds. That is over

225 times faster. Of course, the timing will vary depending on the actual

implementations and hardware, but it is expected the neural network will

be faster. The timing of the neural network is not displayed in figure 7

because it is so much smaller than the local optimiser, and exhibits such

small variation, that it is practically indistinguishable from the horizontal

axis. However, nothing is free: the time saved during calibration is gained

by investing in training the network, which takes about one hour. The

configuration is detailed in figure 2.

Conclusions
The use of pricing models in quantitative finance necessitates their calibra-

tion to relevant market data in an optimisation process, which can be time

consuming. One’s choice of model is informed by many considerations,

and the time required to perform the calibration is certainly an important

one, particularly in settings such as trading desks.

We propose a novel approach for calibration that can offer signif-

icant time savings during calibration when compared with the tradi-

tional optimisation-based approach. The improvement in performance is

achieved by utilising neural networks to approximate the calibration prob-

lem, offloading the bulk of the calculations to a training phase, which can

be done offline and at a convenient time.

As an example, our approach was tested using a Hull-White model

calibrated to 156 swaptions. The out-of-sample back-test showed good

behaviour for between six months and one year after the end of the period
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used in the correlation estimation. After that, a significant degradation of

the calibration performance of the neural network was observed.

The performance degradation beyond six months is not problematic, as

one could simply retrain the model periodically in order for it to remain

within acceptable bounds. Also, in critical environments, safeguards could

be set up to monitor the reliability of the solution. For example, a periodic

parallel calibration using the traditional approach could be used to ascer-

tain the reliability of the neural network vis-a-vis the current market state.

Overall, it can be seen that the methodology described in this article

presents a substantial time improvement. Moreover, the time required to

calibrate the model upon being presented with new inputs is quite uniform,

as shown by the very low standard deviation in the example presented.

This is a direct consequence of figure 2. While the training might be time

consuming, the actual calibration involves multiplying only a few matrices

and evaluating a handful of exponentials. The speed improvement will

carry over directly to more complicated models.

Further points of study could involve using a parameterised correlation.

Such a possibility would enable training with states that reflect not only the

current market environment but also possible future developments. This

could extend the lifespan of a trained model. It is important to mention at

this point that here, unlike in Monte Carlo calculations, it is not necessary

for the sampling set to be able to correctly predict how future market con-

ditions will look statistically; it must simply contain samples in sufficient

quantities that mimic such possible conditions.�
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