
�

�

�

�

�

�

�

�

Cutting edge: Counterparty credit risk

Does initial margin eliminate
counterparty risk?
It is widely believed that mandatory posting of initial margin should effectively eliminate counterparty risk from bilateral
trading. Here, Leif Andersen, Michael Pykhtin and Alexander Sokol apply a new framework for collateralised exposure
modelling that shows this is not necessarily true. The authors demonstrate that time lags in the credit support annex
between trade payments and margin reposting can produce exposure spikes that substantially exceed VAR-based initial
margin levels, then propose ways to mitigate the effect

C
ollateralisation has long been a standard technique of mitigating

counterparty risk in over-the-counter bilateral trading. The most

common collateral mechanism is variation margin (VM), which

aims to keep the exposure gap between portfolio value and posted collateral

below certain, possibly stochastic, thresholds. However, even when the

thresholds for VM are set to zero, there remains residual exposure to the

counterparty’s default; this results from a sequence of contractual and

operational time lags, starting at the last snapshot of the market for which

the counterparty would post in full the required VM, and finishing at the

termination date after the counterparty’s default. The aggregation of these

lags results in a time period, known as the margin period of risk (MPoR),

during which the gap between the portfolio value and the collateral can

widen.

The posting of initial margin (IM) to supplement VM provides banks

with a mechanism to reduce the residual exposure resulting from market

risk over the MPoR. Until very recently, IM in bilateral trading has mostly

been reserved for bank counterparties deemed as high risk (eg, hedge

funds), and it typically involves a trade-level independent amount set

according to a simple deterministic schedule.

Recently, new uncleared margin rules (UMR) for bilateral trading have

started to take effect, as laid out by the Basel Committee on Banking

Supervision and International Organization of Securities Commissions in

2015 (BCBS-Iosco 2015). Under UMR, VM thresholds are forced to zero,

and IM must be posted bilaterally (into segregated accounts) at the netting

set level, either through an internal model or by look-up in a standard-

ised schedule. If an internal model is used, the IM must be calculated

dynamically as the netting set value-at-risk for a 99% confidence level.

To reduce the potential for margin disputes, and to increase overall mar-

ket transparency, the International Swaps and Derivatives Association has

proposed a standardised internal model known as the standard initial mar-

gin model (Simm) (see Isda 2016). As a practical matter, it is expected that

virtually all banks will use Simm for their day-to-day IM calculations.

In this article, we discuss credit exposure modelling in the presence

of dynamic IM. Leaning on recent results in Andersen et al (2017), we

start by formulating a general model for exposure in the presence of VM

and IM. Applying the resulting framework to a simple case where no

trade flows take place within the MPoR, we derive an asymptotic scaling

factor for processes with Gaussian increments (eg, an Itô process) that

converts IM-free expected exposure (EE) to IM-protected EE, for suffi-

ciently small MPoR. The scaling factor depends only on the IM confidence

level and the ratio of the IM horizon to the MPoR; it equals 0.85% at the

BCBS-Iosco confidence level of 99%, provided that the IM horizon equals

the MPoR. While some deviations from this universal limit value due to

a non-infinitesimal MPoR are to be expected, the reduction of the EE by

about two orders of magnitude is, as we demonstrate, generally about right

when no trade flows are present within the MPoR.

For those periods where trade flows do take place within the MPoR, how-

ever, any scheduled trade payment flowing away from the bank will result

in a spike in the EE profile. In the absence of IM, these spikes often con-

stitute a moderate part of the overall credit valuation adjustment (CVA),1

which mostly originates with the EE level between the spikes. We show

that while IM is effective in suppressing EE between spikes, it will often

fail to significantly suppress the spikes themselves. As a result, the relative

contribution of the spikes to CVA is greatly increased in the presence of

IM. For example, for a single interest rate swap, the spikes’ contribution

to CVA can be well above 90% for a position with IM. Accounting for

spikes, we find that IM may reduce CVA by much less than the two orders

of magnitude one might expect, with the reduction for interest rate swaps

often being less than a factor of 10.

Exposure in the presence of IM and VM
Let us consider a bank B that has a portfolio of OTC derivatives contracts

traded with a counterparty C , covered by a single netting agreement with

VM and IM. Quite generally, exposure of B to default of C measured at

time t (assumed to be the early termination time afterC ’s default) is given

by:

E.t/ D .V .t/ � VM.t/C U.t/ � IM.t//C (1)

where V.t/ is the time t portfolio value from B’s perspective; VM.t/ is

the VM available toB at time t ; U.t/ is the value of trade flows scheduled

to be paid by bothB (negative) andC (positive) up to time t , yet unpaid as

of time t ; and IM.t/ is the value of IM available to B at time t . We further

assume thatB andC postVM with zero thresholds and are required to post

BCBS-Iosco-compliant IM to a segregated account. We then deal with the

modelling of each of the terms VM, U and IM in turn.

� Modelling VM. The length of the MPoR, denoted by ıC , defines the

last portfolio valuation date tC D t � ıC prior to the termination date t

(after C ’s default) for which C delivers VM toB . A common assumption,

which we here denote the classical model, assumes that B stops posting

VM to C at the exact same time C stops posting to B . That is, VM.t/ in

1 Say, 20% of a vanilla interest rate swap’s total CVA may originate with
spikes; see, for instance, the first row of table A.
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Cutting edge: Counterparty credit risk

(1) is the VM prescribed by the margin agreement for portfolio valuation

date tC D t � ıC . Ignoring minimum transfer amount and rounding, the

prescribed VM in the classical model is thus simply:

VMcl.t/ D V.tC / D V.t � ıC / (2)

In the advanced model of Andersen et al (2017), operational aspects

(and gamesmanship) of margin disputes are considered in more detail,

leading to the more realistic assumption that B may continue to post VM

to C for some period of time, even after C stops posting. The model

introduces another time parameter ıB 6 ıC that specifies the last portfolio

valuation date tB D t � ıB for which B delivers VM to C . For portfolio

valuation dates Ti 2 ŒtC ; tB �, B will post VM to C when the portfolio

value decreases, but will receive no VM from C when the portfolio value

increases. This results in a VM of:

VMadv.t/ D min
Ti2ŒtC ;tB �

V.Ti / (3)

Equation (3), of course, reduces to (2) when one sets ıB D ıC .

� ModellingU . In the most conventional version of the classical model,

here denoted ‘classicalC’, it is assumed that all trade flows are paid without

incident by both B and C for the entire MPoR, up to and including the

termination date (ie, in the time interval .tC ; t �). This assumption simply

amounts to setting:

UclC.t/ D 0 (4)

One of the prominent features of the classicalCmodel is that the time 0

expectation ofE.t/, denoted EE.t/, will contain upward spikes whenever

there is a possibility of trade flows fromB to C within the interval .tC ; t �.

The spikes appear because, by the classical model’s assumption, C makes

no margin payments during the MPoR and consequently will fail to post an

offsetting VM amount toB afterB makes a trade payment toC . For banks

calculating exposure on a sparse fixed exposure time grid, the alignment

of grid nodes relative to trade flows will add numerical artifacts to genuine

spikes, causing spikes in the EE profile to appear and disappear as the

calendar date moves. As a consequence, an undesirable instability in EE

and CVA is introduced.

An easy way to eliminate exposure spikes is to assume that neither B

nor C makes any trade payment within the MPoR. The resulting model,

here denoted ‘classical�’, consequently assumes that:

Ucl�.t/ D TFnet.t I .tC ; t �/ (5)

where TFnet.t I .s; u�/ denotes the time t value of all net trade flows payable

on the interval .s; u�. The classical�model avoids the EE and CVA insta-

bilities in the classicalC model, and it is used by a significant number of

banks.

It should be evident that neither classicalC nor classical� assumptions

on trade flows are entirely realistic. In the beginning of the MPoR both B

and C are likely to make trade payments, while at the end of the MPoR

neither B nor C are likely to make trade payments. To capture this effect,

the advanced model (Andersen et al 2017) adds two more time parameters,

ı0
C

and ı0
B
6 ı0

C
: these specify the last dates, t 0

C
D t � ı0

C
for C and

t 0
B
D t � ı0

B
for B , at which trade payments are made prior to closeout at

t . This results in an unpaid trade flows term of:

Uadv.t/ D TFC!B .t I .t 0C ; t
0
B �/C TFnet.t I .t 0B ; t �/ (6)

where an arrow indicates the direction of the trade flows and C ! B

(B ! C ) trade flows have a positive (negative) sign.

� Modelling IM. We model IM at a netting set level assuming BCBS-

Iosco specifications. Following the BCBS-Iosco restrictions on diversi-

fication, we define IM for a netting set as the sum of IMs over K asset

classes:

IM.t/ D
KX

kD1

IMk.t/ (7)

Let Vk.t/ denote the value at time t of all trades in the netting set that

belong to asset class k and are subject to IM requirements. For an asset

class k, we define IM as the quantile at confidence level q of the ‘clean’

portfolio value increment over the BCBS-Iosco IM horizon ıIM (which

may or may not coincide with ıC ), conditional on all the information

available at time tC . That is:

IMk.t/ D Qq.Vk.tC C ıIM/

C TFnet
k .tC C ıIMI .tC ; tC C ıIM�/ � Vk.tC / j FtC / (8)

where Qq.� j Fs/ denotes the quantile at confidence level q, conditional

on information available at time s. Note (8) assumes that C stops posting

IM at the same portfolio observation date (tC ) for which it stops posting

VM; hence, IM is calculated as of tC D t � ıC .

� Summary and calibration. To summarise, we have outlined three

different models for the generic exposure calculation (1): classicalC,

classical� and advanced. Collecting the results, we have:

EclC.t/ D .V .t/ � V.t � ıC / � IM.t//C (9)

Ecl�.t/ D .V .t/ � V.t � ıC /C TFnet.t I .tC ; t �/ � IM.t//C (10)

Eadv.t/ D
�
V.t/ � min

Ti2ŒtC ;tB �
V.Ti /C TFC!B .t I .t 0C ; t

0
B �/

C TFnet.t I .t 0B ; t �/ � IM.t/
�C

(11)

where for all three models IM.t/ is computed as in (7) and (8).

In practice, the calibration of the time parameters of the advanced model

should be informed by both the bank’s legal rights and its aggressiveness

in pursuing them. For the former, we refer to the detailed discussion in

Andersen et al (2017) of the Isda Master Agreement and the ‘suspension

rights’ in its Section 2(a)(iii).

With four time parameters, the advanced model allows a bank great flex-

ibility in modelling its risk tolerance and choosing procedures for exercis-

ing its suspension rights. A bank may, in fact, calibrate these parameters

differently for different counterparties, to reflect its risk management prac-

tices towards counterparties of a given type.2 Additional discussion can

be found in Andersen et al (2017), which also provides some prototypi-

cal parameter settings: the aggressive calibration (B can always sniff out

financial distress in its counterparties and is swift and aggressive in enforc-

ing its legal rights) and the conservative calibration (B is deliberate and

cautious in enforcing its rights, and acknowledges the potential for oper-

ational errors and for rapid, unpredictable deterioration of counterparty

credit). For the numerical results in this article, we set the values of the

time parameters to be between aggressive and conservative.

2 One may also make the time parameters stochastic, eg, by making the
lags a function of exposure magnitude. This way, one can, say, model the
fact that a bank may tighten its operational controls when exposures are
high.
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Cutting edge: Counterparty credit risk

The impact of IM: no trade flows within the MPoR
Here, we examine the impact of IM on EE when there are no trade flows

within the MPoR. For simplicity, we work with the classical model, and

assume the entire netting set is covered by IM and comprised of trades all

belonging to the same asset class.

In the absence of trade flows on .tC ; t �, (9) and (10) show the classical

model computes expected exposure as:

EE.t/ D EŒ.V .t/ � V.tC / � Qq.Vk.tC C ıIM/ j FtC //
C� (12)

where EŒ�� is the expectation operator. In the absence of IM, this expression

would be EE0.t/ D EŒ.V .t/�V.tC //
C�; we are interested in establishing

meaningful estimates of the IM ‘efficiency ratio’:

�.t/ , EE.t/

EE0.t/
(13)

Suppose the portfolio value V.t/ follows an Itô process:

dV.t/ D �.t/ dt C s.t/> dW.t/

where W.t/ is a vector of independent Brownian motions, and � and

s.t/ are well-behaved processes (with s.t/ being vector-valued) adapted

to W.t/. Note that both � and s may depend on the evolution of multiple

risk factors prior to time t . For convenience, define �.t/ D js.t/j. Then,

for some sufficiently small horizon ı, the increment of portfolio value

over ŒtC ; tC Cı�, conditional on FtC , is well approximated by a Gaussian

distribution with mean �.tC /ı and standard deviation �.tC /
p
ı.

Assuming �.tC / > 0, we may ignore the drift term for small ı.

Under the Gaussian approximation above, it is then straightforward to

approximate the expectation in (12) in closed form:

EE.t/ � EŒ�.tC /�
p
ıC Œ�.z.q// � z.q/˚.�z.q//�

where z.q/ ,
p
ıIM=ıC˚

�1.q/, and � and ˚ are the standard Gaus-

sian probability density function and a cumulative distribution function,

respectively. Similarly, EE0.t/ � EŒ�.tC /�
p
ıC�.0/, so that � in (13) is

approximated by:

�.t/ �
�.z.q// � z.q/˚.�z.q//

�.0/
(14)

Interestingly, the multiplier in (14) is independent of t and depends only

on two quantities: the confidence level q used for specifying IM, and the

ratio of the IM horizon to the MPoR. For the value of the confidence level

q D 99% specified by the BCBS-Iosco framework, (14) results in a value

of � D 0:85% when ıIM D ıC , ie, IM is expected to reduce expected

exposure by a factor of 117.

We emphasise that (14) was derived under weak assumptions, relying

only on a local normality assumption for the portfolio value. A special

case for which (14) becomes exact is when the portfolio process follows

a Brownian motion, a result derived in Gregory (2015). More generally,

however, we have shown that (14) constitutes a small ı limit, and a use-

ful approximation, for a much broader class of processes. In fact, we

can extend to jump-diffusion processes, provided that portfolio jumps are

(approximately) Gaussian. The analysis in Andersen et al (2016a) sug-

gests that the local Gaussian approximation is quite robust for a 10-day

horizon,3 lending support to the notion that introducing IM at the level

of q D 99% should generally result in about two orders of magnitude

reduction of EE, when no trade flows occur within the MPoR.

The impact of IM: trade flows within the MPoR
In what follows, we consider the efficacy of IM in the more complicated

case where trade flows are scheduled to take place within the MPoR. In

practice, many portfolios produce trade flows nearly every business day,

so this case is of considerable relevance.

Unless one operates under the classical�model assumptions of no trade

flows paid by eitherB orC within the MPoR, any possibility ofB making

a trade payment to C in the future results in a spike in the EE profile.

These spikes appear because the portfolio value will jump following B’s

payment, but C would fail to post or return VM associated with this jump.

As an example, let us consider the impact of IM on the EE profile for

a two-year interest rate swap, where B pays the fixed rate semiannually

and receives quarterly floating payments.4 We assume a flat initial inter-

est rate of 2% under lognormal dynamics with volatility 50%. Panel (a)

in figure 1 shows EE profiles for the classical˙ and advanced models

under a two-way credit support annex (CSA), with zero-threshold daily

VM but without IM. As expected, both the classicalC and advanced mod-

els produce spikes around the payment dates: the spikes are upwards at

the semi-annual dates (when B makes a payment) and downwards at the

quarterly dates between the semi-annual dates (when B does not make a

payment). In panel (b), we add dynamic IM (defined by UMR in (8) and

calculated exactly by taking advantage of the single-factor dynamics) to

this swap and show the resulting EE profile on the same scale as the no-

IM result in panel (a). In the areas between EE spikes, IM reduces the EE

by a factor of approximately 100,5 so no finite exposure is visible on the

graph’s scale. However, the spikes are barely reduced by IM, as the level

of IM is calculated without the effect of trade flows, and the height of the

spikes greatly exceeds the ‘baseline’ level of diffusion-driven exposure to

which IM is calibrated according to (8). Note that the degree of reduction

of the spikes decreases with the simulation time: the IM amount on all

simulation paths shrinks over time due to the amortisation effect, while

the size of the swap payments remains roughly the same.

To demonstrate the impact of IM on CVA for the swap example above,

table A shows CVA calculated from the EE profiles in panels (a) and (b)

3 The accuracy of the local Gaussian approximation was checked in Ander-
sen et al (2016a) by calculating � analytically for a lognormal portfolio
value. At an IM horizon equal to MPoR D 10 business days, deviations of
� from the local Gaussian value of 0:85% are noticeable and grow in the
magnitude of the lognormal volatility (eg, if the volatility is equal to 50%,
one computes values of � D 1:10% for a long portfolio and � D 0:65%
for a short portfolio). While these deviations are certainly significant in
a relative sense, they do not change the two-orders-of-magnitude scale of
the EE reduction.
4 Results for a swap with identical floating and fixed frequencies can be
found in Andersen et al (2016a).
5 The reduction factor is slightly less than the local normal approximation
predicts. This is due to our use of lognormal interest rates, which vio-
lates the local normality assumption at finite horizons (see Andersen et al
(2016a) for details).
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1 Expected exposure profiles for a two-year swap
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EE profiles of a two-year interest rate swap, as percentage of swap
notional.B pays 2% fixed (semi-annually), receives floating (quarterly).
Interest rate curve flat at 2% quarterly compounded, with 50%
lognormal volatility. CSA: zero-threshold VM, no MTA, no rounding, daily
posting. MPoR assumptions: ıC D 10 business days, ıB D 8 business
days, ı 0C D 6 business days, ı 0B D 4 business days. Exposure
computed from 5,000 Monte Carlo simulations on a daily simulation
grid. (a) Without IM. Note that the classical� EE profile has no spikes;
away from spikes, the classicalC and classical� EE profiles perfectly
coincide. (b) With IM, at the confidence level q D 99% for
ıC D ıIM D 10 business days

A. CVA of a two-year swap

Quantity Classical� ClassicalC Advanced
CVA (no IM) 0.267 0.391 0.408
CVA (with IM) 0.003 0.094 0.061
Ratio 1.05% 24.0% 14.8%

The impact of IM on CVA under different models of collateralised exposure. All CVA
values are given relative to the CVA value for the case of no VM and no IM. The third
row lists the ratio of CVA with IM to CVA without IM. For CVA calculations, the recovery
rate was 50% and the credit intensity was 150 basis points. Exposure profiles for the
CVA calculations were imported from figure 1.

of figure 1.6 Since the classical�model does not have spikes, CVA in this

model is reduced by two orders of magnitude by IM, as one would expect

from (14). The presence of spikes, however, reduces the effectiveness of

IM significantly: the CVA with IM is about 24% of the CVA without IM

for the classicalC model, and 15% for the advanced model.

6 To show the impact of VM on uncollateralised CVA, all CVA numbers
are shown relative to the CVA of an otherwise identical uncollateralised
swap.

Overall, our swap example demonstrates that when trade flows within

the MPoR are properly modelled, IM at the 99%VAR level may not be suf-

ficient to achieve even a one-order-of-magnitude reduction of CVA. Also,

since spikes dominate CVA in the presence of IM, accurately modelling

the trade flows paid within the MPoR is especially important when IM

is present. Here, the advanced model is clearly preferable, as neither the

classicalC nor the classical�model produce reasonable CVA numbers for

portfolios with IM.

Finally, we should note that even if one uses only the advanced model,

the impact of IM on CVA may vary significantly, depending on the

trade/portfolio details and the model calibration. It is well beyond the

scope (and space constraints) of the current article to pursue this topic in

detail, but we can make the following general observations.

� Payment frequency. A higher frequency of trade payments results in

more EE spikes, thus reducing the effectiveness of IM.

� Payment size. A higher payment size relative to trade/portfolio value

volatility results in higher EE spikes, thus reducing the effectiveness of

IM.

� Payment asymmetry. EE spikes are especially high for payment dates

where onlyB pays, or whereB is almost always the net payer. The presence

of such payment dates reduces the effectiveness of IM.

� Model calibration. In the advanced model, the width of the spikes is

determined by the time interval within the MPoR where B makes trade

payments, ie, ıC � ı
0
B

. Thus, larger ıC (ie, the MPoR) and/or smaller

ı0
B

(ie, the time interval within the MPoR when B does not make trade

payments) would result in wider spikes and, thus, reduced effectiveness

of IM.

Numerical techniques
� Daily time grid. The results described above make evident the impor-

tance of accurately capturing exposure spikes from trade flows with a daily

resolution: something that, if done by brute-force methods, will likely not

be feasible for large portfolios. In Andersen et al (2017), we discuss a

fast approximation that produces a reasonably accurate EE profile with-

out a significant increase of computation time relative to standard (coarse

grid) calculations. This method requires the simulation of risk factors and

trade flows with a daily resolution, but the portfolio valuations (which

are normally the slowest part of the simulation process) can be com-

puted on a much coarser time grid. Portfolio values on the daily grid

are then obtained by Brownian bridge interpolation between the values at

the coarse grid points, with careful accounting for trade flows. We refer the

reader to Andersen et al (2017) for a detailed description of the numerical

implementation.

� Calculation of pathwise IM. As per (7) and (8), the calculation

of IM requires dynamic knowledge of the distribution of portfolio value

increments (‘P&L’) across K distinct asset classes. Since the conditional

distributions of P&L are generally not known, one must rely on numerical

methods to calculate IM. In Andersen & Pykhtin (2015) and Andersen

et al (2016a), we discuss various regression techniques suitable for these

calculations. For each asset class, a reasonable and practical approach is to

base the regression on a single regression variable: the portfolio value on

a given simulation path at the beginning of the MPoR. Either parametric

or kernel regression can be used to calculate the standard deviation of the

P&L conditional on a path. The IM amount on a path can then be calculated

by applying the local normality assumption.
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We should note that if a bank uses an out-of-model margin calculator

(eg, the Simm method in Isda (2016)), an adjustment will be needed to

capture the difference between the in-model IM computed (as above) by

regression methods and the out-of-model margin calculator actually used.7

� Calculation of pathwise exposure. Once IM on a path is calcu-

lated,8 exposure on that path can then, in principle, be obtained directly

by subtracting the calculated IM value from the no-IM exposure. This

approach works well when the trades covered by IM represent a reason-

ably small fraction of the overall counterparty portfolio. However, when

the netting set is dominated by IM-covered trades, this approach suffers

from two issues that have an impact on the accuracy of EE (and, there-

fore, CVA) calculations: excessive simulation noise and potentially sig-

nificant errors resulting from the local Gaussian assumption in calculation

of pathwise IM.

Both of these issues can, as we shall see, be remedied by calculating

the time tC pathwise expected exposure for a time t default, rather than

the exposure itself.9 By assuming local normality for the P&L and that

trade flows within the MPoR on a path are known at the beginning of the

MPoR, it is shown in Andersen et al (2016a) that the time tC EE on a path

can be calculated as:

EE.m/.t/ D � .m/.tC /
p
ıC .d

.m/.t/˚.d .m/.t//C �.d .m/.t/// (15)

d .m/.t/ ,
�PTF.m/adv .t; .tC ; t �/ �

P
IM.m/
k
.t/

� .m/.tC /
p
ıC

where (omitting arguments):

PTF.m/adv D TF.m/ � U .m/adv

are the net trade flows scheduled within the MPoR that are actually paid,

according to the advanced model. Note that (15) was derived for the sim-

plified case of the advanced model with ıB D ıC . In Andersen et al

(2016a), we show how this result can be extended to the more general case

ıB < ıC .

To illustrate the benefits of the proposed conditional EE simulation

method, we turn to the two-year interest rate swap considered earlier. EE

profiles from several computational approaches are shown in figure 2.

In figure 2(a), our attention is focused on the upward EE spike pro-

duced by trade payments at the one-year point. Both unconditional and

conditional EE estimators here produce an almost identical spike, slightly

exceeding the benchmark spike height; this is a consequence of using ker-

nel regression and a Gaussian distribution to estimate IM. Part (b) of the

figure shows the EE profiles at a fine exposure scale, allowing for clear

observation of EE between the spikes. The advantages of the conditional

EE approach can then be seen clearly:

7 Many possible methods could be contemplated here, eg, the common
idea of using a multiplicative adjustment factor that aligns the two margin
calculations at time 0.
8 Note that pathwise IM results allow for straightforward computation of
margin valuation adjustments (MVAs) (see, for example, Andersen et al
2016b).
9 If our target exposure measure is the unconditional (time 0) EE, this
substitution is, of course, valid by the law of iterated expectations.

2 Expected exposure profiles for a two-year swap
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EE profiles of a two-year interest rate swap in the advanced model, as
percentage of swap notional. Swap terms, CSA and model setting as in
figure 1. The graphs contain three different exposure computations:
‘Unconditional’, direct computation with 5,000 daily simulation paths,
and the IM on each path computed by kernel regression; ‘Conditional’,
(15) with 5,000 daily simulation paths, and the IM on each path
computed by kernel regression; and ‘Benchmark’, with 50,000
simulations and IM computed exactly, using the same technique as in
figure 1. (a) Focus on the one-year spike. (b) Focus on exposure
between spikes

� Reduction in simulation noise. While both methods used Monte Carlo

simulation with 5,000 paths, the simulation noise in the conditional EE

approach is substantially less than that in the unconditional EE approach.

In fact, the conditional EE noise is even less than in the benchmark EE

results that were calculated with 50,000 paths.

� Reduced error from non-Gaussian dynamics. We used a high-volatility

lognormal interest rate model in our example to produce significant devi-

ations from local normality over the 10-day horizon. This non-normality

is the main reason for the deviations of the conditional and unconditional

EE curves from the benchmark. In estimating (12), the conditional estima-

tor uses a Gaussian distribution to approximate both IM and the portfolio

increment, resulting in partial error cancellation. Such error cancellation

does not apply to the unconditional estimator, which uses the empirical

distribution for the portfolio increment yet estimates IM from a Gaus-

sian distribution. Therefore, between spikes, the EE errors for the uncon-

ditional estimator are here significantly larger than for the conditional

estimator.
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Cutting edge: Counterparty credit risk

Conclusion
The new BCBS-Iosco IM rules will lead to substantial margin post-

ings into segregated accounts. These will be accompanied by inevitable

increases in the funding costs (MVA) banks will face when raising funds for

IM. According to conventional wisdom, these postings, while expensive,

should effectively eliminate counterparty credit risk.

In this article, we have examined the degree to which bilateral IM

required by the BCBS-Iosco margin rules suppresses counterparty expo-

sure. As we have shown in Andersen et al (2017), any trade flow to the

defaulting party for which it does not return margin during MPoR causes

a spike in exposure profile. These spikes are often ignored by banks as

‘spurious’ or as being part of ‘settlement risk’. In reality, these spikes

are an integral part of the exposure profile and represent real risk that

has previously materialised in many well-documented incidents, notably

the non-payment by Lehman of reciprocal margin to trade payments that

arrived around the time of the bankruptcy filing.

We have shown that, under very general assumptions, the BCBS-Iosco

IM specified as the 99% 10-day VAR reduces exposure between the spikes

by a factor of more than 100, but it fails to suppress the spikes to a com-

parable degree. This happens because IM is calculated without reference

to trade payments, and it is based only on changes of the portfolio value

resulting from risk factor variability. As an example, we showed that IM

reduces the CVA of a two-year interest rate swap with VM by only a factor

of around 7. While VAR-based IM fails to fully suppress the contribution

of exposure spikes to CVA and EAD, increasing IM to always exceed peak

exposure would be impractical, and would require moving large amounts

of collateral back and forth in a matter of days.

Another important property of CVA under full IM coverage is that it is

dominated by exposure spikes: in our two-year swap example, spikes’con-

tribution to CVA is about 95% in the presence of IM (compared with about

20% without IM). Thus, in the presence of IM, the focus of exposure mod-

elling should be on capturing the impact of trade payments, which involves

making realistic assumptions on what payments the bank and the coun-

terparty are expected to make contingent on the counterparty’s default.

Furthermore, to accurately calculate CVA that is mostly produced by nar-

row exposure spikes, one needs to produce exposure on a daily time grid.A

method for producing daily exposure without daily portfolio revaluations

was discussed above, along with other useful numerical techniques.

REFERENCES

Andersen L and M Pykhtin,
2015
Accounting for dynamic initial
margin in credit exposure
models
Presentation at RiskMinds
International 2015

Andersen L, M Pykhtin and
A Sokol, 2016a
Credit exposure in the presence
of initial margin
Working Paper, available at http://
papers.ssrn.com/sol3/papers.cfm?
abstract_id=2806156

Andersen L, D Duffie and
Y Song, 2016b
Funding value adjustment
Working Paper, available at http://
papers.ssrn.com/sol3/papers.cfm?
abstract_id=2746010

Andersen L, M Pykhtin and
A Sokol, 2017
Rethinking the margin period of
risk
Journal of Credit Risk 13(1),
pages 1–45

Basel Committee on Banking
Supervision and International
Organization of Securities
Commissions, 2015
Margin requirements for
non-centrally cleared derivatives
BCBS-Iosco, March

Galati G, 2002
Settlement risk in foreign
exchange markets and CLS
Bank
BIS Quarterly Review December,
pages 55–66 (available at www.bis
.org/publ/qtrpdf/r_qt0212f.pdf)

Gregory J, 2015
The XVA Challenge:
Counterparty Credit Risk,
Funding, Collateral, and Capital
Wiley (3rd edition)

International Swap and
Derivatives Association, 2016
ISDA SIMM methodology
Isda, April (version 3.15)

A natural question to ask is why similar payment effects have not been

recognised in trading through central counterparties (CCPs), which also

require IM posting that is typically based on 99% VAR over the MPoR.

As it turns out, CCPs already use a mechanism that amounts to netting of

trade and margin payments; unfortunately, the same approach cannot be

adopted in bilateral trading, as it would require changing all of the existing

trade documentation, a practical impossibility.

While a trade payment and a reciprocal lagged margin payment cannot

be netted in bilateral trading, the lag can be eliminated and two payments

made to fall on the same day by making a simple change in the CSA.

Specifically, if the CSA is amended to state that known trade payments

due to arrive prior to the scheduled margin payment date must be sub-

tracted from portfolio valuation for the purposes of margin (technically,

this amendment effectively sets VM based on a two-day portfolio forward

value), then the call for reciprocal margin will happen ahead of time, and

it will arrive on the same day as the trade payment (a ‘no lag margin

settlement’).

From an IT and back-office perspective, this change in the CSA is rela-

tively easy to align with existing mark-to-market and cashflow processes,

and is beneficial in several ways. First, it shortens the duration of exposure

spikes and MPoR overall, reducing counterparty risk. Second, it makes

margin follow mark-to-market without a two-day lag, thereby eliminating

the need to use outside funds to fund hedging during this two-day period.

Finally, with reciprocal trade and margin payments falling on the same day,

payment-versus-payment services such as CLS Bank (Galati 2002) may

be able to settle trade and margin payments together, reducing residual

counterparty risk even further.�
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