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ABSTRACT

Within a power system, the instantaneous loss of generation or import/export via
an interconnector causes a disturbance in the grid frequency. In a low inertia sys-
tem, it becomes increasingly feasible to identify, size, classify and locate such grid
events using a suitably sensitive and accurate network of measurement devices. Loss
of generation or interconnector capacity often leads to a significant change in the
price stack, leading to movement in market prices as traders adjust their positions.
We demonstrate that a systematic trading strategy using an event-detection signal
based on public frequency data and highly accurate measurement devices can be
profitable. We also assess the sensitivity of profits to the overall event-detection and
trade-execution lead times.
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1 INTRODUCTION

Renewable energy (RE) is key for a greener and more sustainable supply of energy.
However, with the increasing penetration of RE into the power grid, new techni-
cal and economic challenges have emerged (Camapagna et al 2022). One challenge
is the need to manage low inertia levels in power grids. Here, inertia refers to the
resistance of the electrical system to changes in frequency. Grid inertia is primar-
ily provided by the rotational mass of synchronous generators, which are present in
coal, gas, nuclear and biomass power plants but not in RE (eg, wind and solar) gen-
erator systems. Power grids that are largely based on RE can reach low inertia levels
more frequently, yielding high risks of oscillations and grid instability (Tielens and
Van Hertem 2016). For this reason, real-time and accurate monitoring of inertia is of
paramount importance. In the literature, some methods based on frequency measure-
ments and the swing equation have been proposed for the estimation and forecasting
of the inertia in the grid (Ashton et al 2014; Lavanya and Swarup 2023), while a
commercial solution is provided by Reactive Technologies (RT) (Bowcutt 2023).
The latter relies on a micromodulator, which injects power into the grid and creates
a controlled change in the frequency that is captured and processed by a fleet of pro-
prietary devices: eXtensible Measurement Units (XMUs) (Enas et al 2022; Hosaka
et al 2019).

Grid frequency must be maintained within a tight and predefined range to ensure
the seamless delivery of electrical power throughout the system. When grid events
(such as the unplanned outage of a power generator, interconnector or transmission
link) occur, the frequency spikes in either direction (a loss of supply would result
in a sharp drop in grid frequency), followed by a comparatively gradual return to
baseline as the system uses pre- and post-fault mechanisms to safely rebalance itself.
In markets with low-inertia systems, the frequency has a lower level of resistance to
change, and as a result the link between grid events and market fluctuations becomes
particularly pronounced. The reverberations of such events often result in substantial
shifts in market prices.

Increasing RE penetration has had a significant impact on traditional trading strate-
gies in the power markets: there has been a shift toward shorter trading horizons in
wholesale power markets (Bray et al 2020; Hardy et al 2023; Tam and Walker 2023).
As prices become less stable and predictable, traders increasingly rely on intraday
and real-time markets to respond quickly to changes in RE output and grid events.
In March 2023, the European Power Exchange (EPEX) reported an annual increase
of 54.8% for intraday power trading, with record traded volumes seen in Austria,
Belgium, Germany, Denmark, Finland, France, Great Britain (GB) and the Nether-
lands (EPEX 2023). Accurate forecasting of RE generation has become more impor-
tant, including the use of advanced artificial-intelligence-driven weather prediction
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tools (Zhang et al 2022). The increased volatility in short-term power market prices
and growing complexity of decentralized energy portfolios are seeing market partic-
ipants increasingly adopt automated or algorithmic trading strategies (traditionally
the reserve of financial markets). Savcenko (2023) suggests that 50% of all intra-
day continuous traded power volume in Europe in 2022 may have been executed via
algorithms.

The performance of energy trading algorithms can be evaluated against specific
metrics. One such metric, which is commonly used by traders (Białkowski et al
2008), is the volume-weighted average price (VWAP). This represents the average
price per unit of energy traded for a specific settlement period throughout the trading
session. The VWAP is calculated by the sum product of the price of each trade and
its corresponding volume (in megawatt hours), divided by the total number of MWh
traded over the period in question. Given its widespread usage, an improvement on
the VWAP is a good metric by which we can measure the profitability of a trading
strategy.

Timely information about a grid event has become a key input for power trading
algorithms. In the simplest form, events can be detected by monitoring the changes
in electrical frequency, voltage or the rate of frequency (Pagnier and Jacquod 2018).
However, these strategies might yield numerous false alarms or “misdetections”,
either due to oscillatory components or noise, or simply because the frequency reader
has a low sampling rate. In this regard, some studies (see, for example, Leao et al
2020) have shown that fast, accurate event detection can be performed with the aid of
artificial intelligence, which tries to recognize the event from features derived from
the frequency signal. The solution provided by RT, on the other hand, exploits a fleet
of XMUs that can report their data to the Reactive Cloud in real time for process-
ing and analysis. The detection is based on a proprietary algorithm that detects key
features of an event. The detection of grid events by monitoring frequency changes
can be achieved in under a minute; by way of contrast, the publication of a for-
mal notice of unplanned outages by asset operators under Regulation on Wholesale
Energy Market Integrity and Transparency (REMIT) obligations takes, on average,
15 minutes.

In this paper we leverage the fast event detection provided by RT to develop what
is, to the best of knowledge, a novel energy-trading strategy, and we use Brady Tech-
nologies’ algorithmic trading platform, PowerDesk Edge, to backtest this strategy.
More specifically, we demonstrate with an offline analysis of trades that a systematic
trading strategy that uses live frequency data to identify grid events can be profitable.
In addition, we show that the profit achieved by such a strategy will increase as the
overall event-detection and trade-execution lead times decrease. In other words, the
more quickly we can identify grid events and act upon this information, the better
positioned we are to capitalize on them.
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The reminder of the paper is organized as follows. In Section 2 we provide a
detailed description of the frequency data used by the algorithm and the underpin-
ning model of the trading method. In Section 3 we dive into the experiment with
a description of the market data and a comparison between our results, a baseline
trading strategy and the proposed event-driven strategy. Finally, in Section 4 we
summarize our observations and state our conclusions.

2 EVENT-DRIVEN TRADING ALGORITHM

2.1 Measurement data

Event information is obtained from the measurements performed by the fleet of RT
XMU devices. Generally, the XMUs are capable of accurately measuring raw power
system metrics, such as the voltage phase and frequency. They are small sized and
typically connected at 230 V via a plug socket. Global positioning system (GPS)
connectivity enables time-aligned measurements, and broadband or mobile connec-
tivity allows data transmission directly to the cloud via an encrypted internet con-
nection. In the cloud, these measurements are processed (filtered and analyzed) to
detect the event start, to estimate the event size and to infer the cause (intercon-
nector, transmission, generation and load). More specifically, the event detection is
based on the analysis of the frequency and the rate of frequency change. Event sizing
leverages the RT inertia measurements and, finally, events are classified by means of
a machine-learning method trained on frequency measurement features.

2.2 Grid event reaction strategy

In the GB electricity market, energy can be traded as a contract for delivery of energy
for a half-hour period. These half-hour delivery periods are called settlement peri-
ods.1 There are 48 settlement periods on days when the GB market is not going
though a clock change from British summer time to Coordinated Universal Time
(UTC).

On the GB EPEX Spot intraday market,2 market participants trade continuously,
24 hours a day, with delivery on the same day. Participants submit orders, comprising
a volume and price at which they are willing to buy or sell. As soon as a buy- and sell-
order match, the trade is executed. Electricity can be traded up to 15 minutes before
the start of delivery and through hourly, half-hourly or quarter-hourly contracts.

1 URL: www.elexon.co.uk/glossary/settlement-period/.
2 URL: www.epexspot.com/en/basicspowermarket#day-ahead-and-intraday-the-backbone-of-the-
european-spot-market.
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Considering the above context, let s denote the settlement period being traded,
which can vary from 1 to 48. Let Ts be the set of all timestamps t for which a trade
for the settlement period s is executed. More specifically, t 2 Ts with t s0 6 t < t sgate,
where t s0 and t sgate are the start time and the gate-closure time for the settlement period
s. We assume a net open position of 50 MWh to buy or sell and assume that this
position will be closed under a single contract comprised of a single order.3

The proposed grid event-reaction strategy is an opportunistic strategy, which con-
sists of the following. When a grid event occurs at event time tE, we take a decision
with reaction time R to buy or sell within settlement period s at price ps

tECR for a
trade volume V D ˙50 MWh. Clearly, this strategy will have a greater impact on
settlement periods that are closer to the event time tE that those are far away. More
specifically, the efficacy of the proposed strategy can be measured by comparing
the price at which the trade is completed (ps

tECR) with the portion of the VWAP
(Białkowski et al 2008) conditioned by the event, ie, the tE-truncated VWAP that is
given by

VWAPs
tE

,
Pts

gate
t>tE

vs
tp

s
tPts

gate
t>tE

vs
t

; (2.1)

where vs
t and ps

t refer to the volume and price taken at time t for the settlement-
period s, respectively.

Therefore, with the above definition, we can formulate the relative “profit”, ˛,
obtained for a sell/buy position as

˛ D V.ps
tECR � VWAPs

tE
/:

3 CASE STUDY

In this section, we describe in detail a trading experiment with historic trade and
order data (available, by subscription, via the EPEX Spot Market Data Service) for
the half-hourly continuous intraday GB market. Our objective is to compare the rel-
ative profit and loss of a strategy informed by grid event signals for a range of event
reaction times with a baseline simple averaging strategy. We also investigate the
dependency between the profit ˛ and the reaction time R for both the settlement
period with the closest upcoming gate closure (“Half Hour 0”, henceforth “HH0”)
and the subsequent settlement period (“Half Hour 1”, henceforth “HH1”).

3 While theoretically possible and allowed on the EPEX SPOT, in reality the contract will be made
up of many orders comprising different sellers. These orders constitute the order depth, which is
beyond the scope of this study.
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3.1 Grid events data set

We use GB market grid events (available via the RT Tradenergy service) over the
period from August 4, 2022 to June 14, 2023. Focus is on grid events over 300 MW
that resulted in a reduction in frequency. We ignore grid events associated with loss
of load or exporting interconnectors that will likely decrease prices (a potential area
for future study). This provides a sample of 90 grid events: 58 associated with loss
of generation; 10 from loss of an importing interconnector; and 22 transmission-
related issues. While the source data set includes sizing and classification of events
by generation, transmission or interconnector, the trading strategy analyzed does not
attempt to use this information, but focuses simplistically on event detection as the
input signal. This data set includes a proportion of false positives (ie, events detected
but not subsequently confirmed by market publications); these are included in the
analysis and reflected in the overall assessment of the event strategy profitability.

3.2 Baseline strategy

The baseline strategy is simply defined by the action of purchasing a total of 50 MWh
of power in increments distributed evenly in time between the event detection time
and the end of trading for the relevant half-hourly continuous intraday GB product.
It can easily be demonstrated that this strategy achieves a truncated VWAP (ie, trade
prices before the event are ignored) for the 50 MWh purchase.

3.3 Event strategy

We use Brady Technologies’ PowerDesk Edge backtesting platform with the grid
event data set to simulate an “aggressor strategy” whereby, based on the event detec-
tion time plus some increment of time (the “reaction time”) reflecting the combined
lead time for event identification and trade execution, a 50 MWh position is closed
by purchasing (“aggressing”) against available open market sell orders.

3.4 Evaluation method

The event strategy will be considered more profitable than the baseline strategy if,
at the event detection time plus the reaction time, orders are available in the market
at a price lower than the VWAP of trades executed after the event detection time.
Conversely, if the VWAP of trades after the event detection time is less than the
orders available, a relative loss will be accrued to the event strategy.

Further, the profit and loss for the 90 sample events were assessed with reaction
times of 0s, 10s, 20s, 30s and 50s after event detection. We considered the profit and
loss associated with the next two half-hourly products open for trading at the event
detection time (HH0 and HH1).

Journal of Energy Markets www.risk.net/journals



Automated power market trading using event signals 7

FIGURE 1 An example grid event price chart.
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The price begins to rise as soon as the event occurs. For all reaction times considered, the event strategy conducts
a trade at a better (lower) price than the truncated VWAP. Source: EPEX Spot Trade Data/Reactive Technologies
event data.

3.5 Example event trades

The example in Figure 1 shows traded prices for the 11:00–11:30 delivery period,
before and after an interconnector event on June 8, 2023. Here we can see that the
market was trading at around £47/MWh prior to the interconnector trip and reached
a peak of £110/MWh after the interconnector trip. In this example, the baseline strat-
egy would have achieved a VWAP of £87.18/MWh for post-event trades, whereas
the event strategy would have achieved a price of between £50/MWh and £75/MWh
(depending on the reaction time). For this event, the REMIT notice was published
on ELEXON BM Reports4 on June 8, 2023 at 10:41:28, by which time the price had
increased to £90/MWh.

4 URL: www.elexon.co.uk/knowledgebase/what-is-bmreports-com/.
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3.6 Liquidity constraints

Execution of the strategies was constrained based on market liquidity, such that
trades were only considered feasible where there was an existing open market order
available to aggress. This approach is potentially more conservative than a strat-
egy based on initiating market orders based on the event signal but ensures that
we only measure trades that would have had a viable counterparty at the assumed
execution time.

4 RESULTS

Based on the sample events analyzed, the event strategy was shown to be more prof-
itable overall than the baseline strategy. Further, profitability increased considerably
as the overall reaction time reduced.

4.1 Post-event price changes

The Mann–Whitney U test5 was used to compare the price of the market for equal-
sized populations before and after the event, with the null hypothesis being that there
was no significant change in price distribution at a reasonable significance value of
0.05. Based on this analysis, there are three takeaways. From 1s to 10s after the event
there were no significant changes in the price of orders. From 11s to 30s after the
event the market sees movement, with the p-value getting very close to 0.05. From
30s onward, the p-value is above 0.05, indicating significant order lifting along with
bids chasing the raised orders. We can conclude that there is a definite raise in price
after a grid event, for which the magnitude increases with time.

4.2 Probability density plots

Figure 2 shows the probability density of the event strategy for tradable products
for HH0 and HH1 during the summer and winter periods. Kernel density estimation
is used for smoothing the probability density, since these plots have been created
from a discrete data set. The red line indicates the distribution for a reaction time
of 0s, and the blue line a reaction time of 50s (with gray lines showing variations in
reaction times between these values). The horizontal axis displays the single-instance
profitability of the strategy compared with VWAP, and the vertical axis shows the
probability density of achieving such a profit or loss. The area under the curve to the
right or left of the zero value (considering that slices of the plot should be weighted
according to their value) can be used as an indicator of the average profitability of
the strategy.

5 URL: https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney U test.
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FIGURE 2 Probability density plots of value gained or lost.
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(a) HH0 after event in summer. (b) Half Hour 1 after event in summer. (c) HH0 after event in winter. (d) Half
Hour 1 after event in winter. In all plots, the curve becomes more positively skewed (profitable) as the reaction time
decreases. Source: data from Brady Technologies.

Qualitative analysis of the plots in Figure 2 shows that the closer the trade is to
the event time, the smoother and more positively shifted the density (in other words,
the more reliable and more profitable the trade). This is the case both in winter and
summer and for both HH0 and HH1.

An alternative way of visualizing the results is to plot the cumulative distribution
(Figure 3). Again, the red line indicates the distribution for a reaction time of 0s, and
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FIGURE 3 Cumulative distribution function plots of value gained or lost.
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decreases. Source: data from Brady Technologies.

the blue line a reaction time of 50s (with gray lines showing variations in reaction
times between these values). In the plots, the sooner that a line rises and plateaus, and
therefore the further to the left it is, the less profit there is available. We can observe
that in each half hour, for both summer and winter, the red (short reaction time) line
is to the right of the blue (longer reaction time) line, indicating that the event strategy
is more profitable with a shorter reaction time.
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FIGURE 4 Available value by event reaction time
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4.3 Profit and loss variation by lead time

Figure 4 plots the overall profit from the 90 grid events analyzed, based on different
reaction times. Our results show that the event strategy becomes profitable than the
baseline strategy once the overall reaction time is reduced to 30s. We also see that
the profit available increases up to 20 times where the reaction time is reduced below
10s. Once the reaction time reaches above 50s, it is effectively too late to capitalize
on the price changes caused by the event. In fact, losses are incurred, on average,
relative to VWAP if a trade is made after this time.

4.4 Relative profit per event based on event class

Considering the average relative profit available based on the event class at a 10s
reaction time (Figure 5), we see that both generator and interconnector events are, on
average, profitable. However, we can see that executing the event strategy based on
transmission events resulted, on average, in a small loss. This is somewhat intuitive
since transmission events can often be transient in nature and often will not have a
significant energy impact on the system (and consequently market price). In addition,
we have only considered a relatively small sample of interconnector events and only
looked at the GB market value, whereas further value is likely available when con-
sidering the associated interconnected markets and/or a more sophisticated strategy
that considers the loss of interconnectors importing power to GB (where prices will
typically decrease). This suggests further refinement of the event strategy to use the
event classification could further increase overall profitability.
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FIGURE 5 Available value per event, by event class (10s reaction time)
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4.5 Liquidity

In terms of liquidity, our analysis showed that there were sufficient market orders
available to execute the event strategy in over 90% of the half-hours analyzed
(163 out of the 180). Hence, it is realistic that this strategy could be executable in
practice.

5 CONCLUSIONS

We demonstrated the profitability and viability of a basic trading strategy using a
trading signal sourced from real-time monitoring of grid events. Our analysis high-
lights the high sensitivity of potential profit to the overall reaction time, with a
reduction in the overall latency of event detection and trade execution potentially
increasing the profit available by up to 20 times. While the simple strategy used
for this analysis focuses purely on event detection, it is clear from the results that
more sophisticated approaches using event classification information could be even
more profitable, and this is an area for future research. While our experiment focuses
purely on the continuous intraday wholesale market, strategies that take positions
in the imbalance market based on grid event signals may also warrant exploration.
Given the sensitivity to overall reaction time and potential for more sophisticated
strategies, our analysis highlights that a timely grid event-detection signal alongside
a robust toolkit for development, assessment, implementation and refinement are crit-
ical to a profitable algo trading strategy. In line with the increasing focus on intraday
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trading, high-levels of volatility and increased reliance on automation in short-term
power markets, we foresee increased focus, growth and opportunity in this area in
the future.
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