
Appendix

A The signature transform

For completeness, we will give an elementary introduction to the signature transform, already
defined in Section 2.1, and we will briefly see many of the properties that make it such a
convenient transformation in machine learning.

A.1 Paths of finite p-variation

Definition A.1 (p-variation). Let p ≥ 1 be a real number, and ∥·∥ any norm on Rd. Let
x : [0, T] → Rd be a continuous path. The p-variation of x is defined as

∥x∥p =
 sup

D

n−1∑
i=0

||xti+1 − xti ||p
1/p

,

where the supremum is taken over the set of partitions of [0, T], denoted as D. The space of
d-dimensional continuous paths of finite p-variation will be denoted as Vp([0, T];Rd).

We will equip Vp([0, T];Rd) with the following norm.

Definition A.2 (p-variation norm). The p-variation norm of a path x ∈ Vp([0, T];Rd) is
defined as

∥x∥p−var = ∥x∥p + sup
t∈[0,T]

∥xt∥ ,

where ∥·∥ is any norm in Rd.

For simplicity, we will only work with paths of finite 1-variation, which are called of bounded
variation. The reason for this is that in practice we will always be given a discrete stream
of data, which can be converted into a continuous path by performing some interpolation
scheme. The most common one is linear interpolation (with the resulting paths being of
bounded variation), since then the signature is very easy to compute. This is what the
Signatory package (Kidger & Lyons, 2021) does, providing differentiable computations of the
signature on the GPU.
Moreover, to work with signatures of general paths of finite p-variation, we would need to
introduce many new concepts of rough path theory, which is beyond the scope of this paper.
However, we remark that all the properties of the signature that we will explain also hold (in
some sense) for general continuous paths of finite p-variation.

20

A.2 The tensor algebra

Definition A.3 (Tensor algebra of Rd). Let (Rd)⊗k denote the kth tensor power of Rd. By
convention, (Rd)⊗0 = R. We define the extended tensor algebra of Rd as

T ((Rd)) = {a = (a0, a1, ...) | ∀k ≥ 0, ak ∈ (Rd)⊗k}.

We also define the truncated tensor algebra of order N of Rd, which is a linear subspace of
T ((Rd)), as

T (N)(Rd) = {a = (a0, a1, ..., aN) | ∀k : 0 ≤ k ≤ N, ak ∈ (Rd)⊗k}.

Note that T (N)(Rd) is a real vector space of dimension

N∑
k=0

dk =

N + 1 if d = 1
dN+1−1
d−1 if d > 1.

We will equip T ((Rd)) with an admissible norm, defined as follows.

Definition A.4. We say that the extended tensor algebra T ((Rd)) is endowed with an
admissible norm ∥·∥ if the following conditions hold:

1. For each k ≥ 1, the symmetric group Sk acts by isometry on (Rd)⊗k, i.e.

∥σv∥ = ∥v∥ , ∀v ∈ (Rd)⊗k, ∀σ ∈ Sk.

2. The tensor product has norm 1, i.e. ∀n, m ≥ 1,

∥v ⊗ w∥ ≤ ∥v∥ ∥w∥ , ∀v ∈ (Rd)⊗n, w ∈ (Rd)⊗m.

A.3 Properties of the signature of a path

In this section we go through some of the main properties of the signature of a path, defined
in Definition 2.1.
One of its most important properties is its uniqueness up to time-reparametrizations and
translations. Specifically, we have the following result (Hambly and Lyons, 2010).

Lemma A.1. Let A be a set of continuous paths with bounded variation such that all paths
have the same initial value and have at least one monotone coordinate. Then the signature of
a path in A completely determines it in A.

In order to fulfill the requirements of the last lemma, the two most common injective
transformations that are applied to the original path are:

21

1. Basepoint augmentation: concatenation of xt with the linear path defined in [−1, 0]
with initial value 0 ∈ Rd and final value x0, resulting in

x∗
t =

(t + 1)x0 t ∈ [−1, 0),
xt t ∈ [0, T].

2. Time augmentation: append time as an extra channel, x̂∗
t = (t, x∗

t).

In conclusion, after applying a couple of simple transformations, the signature provides
a perfect codification for any continuous path of bounded variation. We will denote the
space obtained when applying this two transformations to the paths in V1([0, T];Rd) as
A1([0, T];Rd).
As we already explain in Section 2.1, in practice one is not able to compute all the levels of
the signature of a path. This is the reason for defining the truncated signature, which we did
in Definition 2.2.
It turns out that selecting the first levels of the signature is a good approximation, since they
decay in size factorially.

Proposition A.1 (Lyons et al., 2004, Proposition 2.2). Let x ∈ V1([0, T];Rd). Let sigk(x)
denote the kth level of the signature of x. Then, for any k ∈ N we have that

∥sigk(x)∥ ≤
∥x∥k1−var

k! .

A direct consequence is that one is able to approximate the signature arbitrarily well by the
sequence of truncated signatures.

Corollary A.1. Let x ∈ V1([0, T];Rd). Then, for every ϵ > 0, there exists an N ∈ N such
that ∥∥∥sig(x) − sigN(x)

∥∥∥ ≤ ϵ.

Moreover, if we restrict ourselves to a compact subset K ⊂ V1([0, T];Rd), then the convergence
is uniform.

Another very important feature of the signature is the universal non-linearity property, which
states that the signature provides a basis for the space of continuous functions on path space.

Theorem A.2 (Universal non-linearity, Arribas, 2018, Theorem 4.2). Let K ⊂ A1([0, T];Rd)
be a compact subset. Then⋃

N∈N

{
x 7→ ℓ(sigN(x)) | ℓ : T (N)(Rd+1) → Rv is linear

}

is uniformly dense in the space of continuous maps from K to Rv, denoted by C(K;Rv).

22

A.4 The expected signature of a stochastic process

The last property that we will see states that the expected signature of a stochastic process
that has compact support completely determines its distribution.

Theorem A.3 (Fawcett, 2003). Let {Xt}t∈[0,T] and {Yt}t∈[0,T] be two stochastic processes
with compact support K ⊂ A1([0, T];Rd). Then, we have that

1. The expected signatures are well defined, Ex∼X [sig(x)], Ey∼Y [sig(y)] < ∞.

2. If Ex∼X [sig(x)] = Ey∼Y [sig(y)], then X and Y are equal in the distribution sense. In
other words, they have the same law.

B The Signature-Wasserstein-1 metric

We first recall the definition of the Wasserstein-1 distance between distributions defined on
the same measurable space.

Definition B.1 (Wasserstein-1 distance). Let Π(µ, ν) denote the set of all joint distributions
on the measurable space (X × X , F ⊗ F) whose marginals are respectively µ and ν. Then the
Wasserstein-1 distance is defined as

W1(µ, ν) := inf
γ∈Π(µ,ν)

E(x,y)∼γ[||x − y||1]. (3)

In practice the infimum in (3) is highly intractable. Luckily for us, the Kantorovich-Rubinstein
duality (Villani, 2009) states that the Wasserstein-1 distance can be calculated as

W1(µ, ν) = sup
∥F∥L≤1

{
Ex∼µ[F (x)] − Ex∼ν [F (x)]

}
, (4)

where the supremum is over all the 1-Lipschitz functions F : X → R. The most common
approach is to approximate F by a parameterized family of functions that are 1-Lipschitz,
like in the Wasserstein-GAN setting (Arjovsky et al., 2017), which we briefly explain now.
Let Z be a random variable taking values on a space Z. Let Gθ : Z → X be a map
parameterized by θ. Consider the pushforward distribution in X that is given by Gθ(Z),
which we denote as Pθ, and let Pr denote the distribution of the data. Then, our goal is to
minimize an approximation of the Wasserstein-1 distance between Pθ and Pr.
In the Wasserstein GAN approach, the optimization problem that one tries to solve is

min
θ∈Θ

max
ψ∈Ψ

{
Ex∼Pr [Fψ(x)] − Ez∼Z [Fψ(Gθ(z))]

}
,

where {Fψ}ψ∈Ψ is a family of 1-Lipschitz functions. The training algorithm consists in
performing k steps on the parameters on the critic Fψ, and once a good enough approximation
of the Wasserstein-1 distance has been reached, perform one step on the parameters of the

23

generator Gθ. However, this method is very unstable and sensitive to the choice of the
hyperparameters.
Remember that, in our case, we are interested in approximating distributions in path space,
such that X = A1([0, T];Rd). Let K ⊆ X denote the union of the supports of µ and ν. By
definition of (4), there exists a sequence Fn : K → R of functions that are 1-Lipschitz such
that they attain the supremum W1(µ, ν).
If we assume that K ⊂ X is a compact subset, by the universal non-linearity property
of the signature we have that, ∀ϵ > 0 and for each Fn there exists a linear functional
ℓn : T ((Rd+1)) → R such that

sup
x∈K

|Fn(x) − ℓn(sig(x))| ≤ ϵ.

For this reason, Ni et al., 2020 and Ni et al., 2021 propose the use of the sig-W1 metric,
defined as

sig-W1(µ, ν) = sup
∥ℓ∥L≤1

{
Ex∼µ[ℓ(sig(x))] − Ex∼ν [ℓ(sig(x))]

}

= sup
∥ℓ∥L≤1

ℓ
(
Ex∼µ[sig(x)] − Ex∼ν [sig(x)]

)
, (5)

where the expected signature is well defined, since we assumed that both measures have a
compact support. Moreover, by using the truncated signatures and Corollary A.1 we can
approximate (5) by

sigN -W1(µ, ν) = sup
∥ℓ∥L≤1

ℓ
(
Ex∼µ[sigN(x)] − Ex∼ν [sigN(x)]

)
, (6)

where now the linear functionals ℓ are defined in the truncated tensor algebra T (N)(Rd+1).
Since the domain space is finite dimensional, we have that the Lipschitz constant of a linear
functional ℓ : T (N)(Rd+1) → R is simply defined as the norm of its coefficients as an euclidean
vector.
It turns out that when we choose this to be the l2 norm, we have that the optimization
problem (6) admits a closed-form solution (Ni et al., 2020, Lemma A.3), with the solution
being

sigN -W1(µ, ν) =
∥∥∥Ex∼µ[sigN(x)] − Ex∼ν [sigN(x)]

∥∥∥
2

,

which is called the truncated Signature-Wasserstein-1 metric of order N . In the GAN setting,
we can approximate the expected signatures of the model and the data by performing a
Monte Carlo simulation, i.e. by computing the empirical averages of the signatures.

24

C The Conditional Signature-Wasserstein GAN ap-
proach

What if we have some knowledge that we want to use to condition this distribution? Let
X = {Xt}t∈[0,Tx] and Y = {Yt}t∈[0,Ty] be two stochastic processes taking values on

X = A1([0, Tx];Rdx), Y = A1([0, Ty];Rdy).

Let p(X, Y) denote their joint distribution. Then, given any known trajectory x ∈ X , we are
interested in approximating the conditional distribution p(Y |X = x), which we will compactly
denote by Y |x.
In practice, we cannot approximate the expected signature of Y |x by a Monte Carlo procedure,
since for every x we are usually given only one sample. Therefore we must come up with a
different method to estimate Ey∼Y |x[sig(y)].
Just like in supervised learning3, we can formulate this problem as trying to approximate a
map

f : X → P(Y)
x 7→ Y |x,

(7)

where P(Y) is the space of all stochastic processes taking values on Y . If we restrict ourselves
to the family of stochastic processes with compact support, by Theorem A.3 and Lemma A.1
there will exist a unique function f̂ : T ((Rdx+1)) → T ((Rdy+1)) such that

f̂(sig(x)) = Ey∼Y |x[sig(y)], (8)

where we wrote f(x) = Y |x. If we assume that the domain of f is a compact subset, we can
use the uniform convergence of the truncated signatures to approximate (8) by

f̂N,M : K ⊂ T (N)(Rdx+1) → T (M)(Rdy+1)
sigN(x) 7→ Ey∼Y |x[sigM(y)].

The image space of f̂N,M is real and has finite dimension, so one can think of it as an euclidean
space. Therefore we can use the universal non-linearity of the signature to approximate f̂N,M
by a linear functional ℓN,M ,

ℓN,M : K ⊂ T (N)(Rdx+1) → T (M)(Rdy+1)
sigN(x) 7→ Ey∼Y |x[sigM(y)]. (9)

In conclusion, we have reduced a non-linear modelling problem between two continuous
and infinite dimensional spaces in (7) to a linear problem between two discrete and finite
dimensional spaces. Moreover, the function ℓN,M represents a conditional expectation, and so
we can use the classical linear regression framework to approximate it.

3The difference with respect to supervised learning is that in this case we are interested in the conditional
distribution, and not its expectation.

25

This is, given some data {x(i), y(i)}ni=1, we will assume that

sigM(y(i)) = W · sigN(x(i)) + ϵi,

where

• sigM(y(i)) can be viewed as an (dy+1)M −1
dy

dimensional real vector.

• sigN(x(i)) can be viewed as an (dx+1)N −1
dx

dimensional real vector.

• W is a real matrix of dimension (dy+1)M −1
dy

× (dx+1)N −1
dx

.

• ϵi ∼ N (0, σ2I) is i.i.d. Gaussian noise, with I denoting the identity matrix.

and use any standard libraries to compute the weight matrix W .
In practice, we will proceed as follows. Let Z be a random variable taking values on a space
Z. Let Gθ : Z × X → Y be a map parameterized by θ. Then, for a known x ∈ X , we will
consider the pushforward conditional distribution in Y that is given by Gθ(Z, x). Just like
in the unconditional case, the expected signature of Gθ(Z, x) is estimated through a Monte
Carlo procedure.
In order to estimate the expected signature of Y |x from the set of given data, we simply
perform the linear regression explained earlier, from which we obtain an estimate of (9), that
we denote by ℓ̂. Then we can obtain an approximation of Ey∼Y |x[sig(y)] by

Êy∼Y |x[sigM(y)] = ℓ̂(sigN(x)).

D Experimental Details

The experimental details that were used in Section 4, such as the model architectures and
the selected hyperparameters, can be found in the following pages.

D.1 Architectures for the resources cost analysis

LSTM Conditional WGAN The LSTMs of the conditional generator had 5 hidden layers
of width 32, with 5 dimensional random noise, and had 77,089 learnable parameters. The
LSTMs of the critic also had 5 hidden layers of width 32, with 76,609 learnable parameters.

LSTM Conditional Sig-WGAN The architecture of the generator was the same as the
one we just described for the LSTM Conditional WGAN generator. The signature transform
was truncated at depth 5 and 4, for the input and output paths, respectively. We also applied

26

the cumulative sum transformation4. Overall, the dimension of both truncated signatures
was 363 and 120, respectively.

Neural SDE Conditional Sig-WGAN The number of hyperparameters in a conditional
Neural SDE is slightly larger. Since it is a little bit hard to keep track of all of them, we will
mention them along the corresponding notation we used in Definition 3.1.
The size dz of the Neural SDE was 92. The initial random noise size dv was 16 and the
network ξ2

θ was formed by one hidden layer of size 32. The network ξ1
θ was simply a linear

function. The initial condition of the SDE was formed by a random part k of size 8 and a
deterministic part dz − k of size 84. The diffusion gθ was chosen to be of general type. The
dimension of the Wiener process dw was 10. Both the drift fθ and diffusion gθ had a hidden
layer of width 32. The only activation function we used was the hyperbolic tangent, tanh.
The total number of learnable parameters was 79,273.
For the Neural SDE the signatures in the SigCWGAN algorithm were of the same order
and with the same transformations as the LSTM Conditional Sig-WGAN model. The
transformation ϕ(x) of the input paths x was set to be the signature transform, with the
same truncation order and transformation the ones used in the SigCWGAN algorithm.

D.2 Architectures and hyperparameters for the experiments

In this section we will detail the architectures and hyperparameters that were used for each
experiment in Section 4.2, which were selected by performing an informal grid search.
First we will list the ones that were common to all the datasets.

D.2.1 Common hyperparameters

The optimizers that were used were as follows: for the LSTM CWGAN, following Arjovsky
et al., 2017 we used RMSprop. For the models trained with the SigCWGAN algorithm, we
used Adam. The learning rate was always set to 10−3.
In all the univariate time series experiments the signature transform was truncated at depth 5
and 4, for the input and output paths, respectively. For the bivariate time series experiment,
the signature was truncated at depth 4 for both the input and output paths.
We also applied the cumulative sum transformation, and we normalized each dimension so
that it had zero mean and unit variance. The transformation ϕ(x) of the Neural SDEs was
set to be the signature transform, with the same truncation order and transformation the
ones used in the SigCWGAN algorithm.

4Although the truncated signatures approximate arbitrarily well the signature transform, this does not
mean that some crucial information might be lost by not computing higher levels. In order to mitigate this,
usually some transformations are applied to the given stream, see Morrill et al., 2020.

27

D.2.2 AR(p) dataset

The training set was formed by 14,900 pairs of time series data (x, y). The validation set was
formed by 2,400 samples. The test set was formed by 12,400 samples. We normalized the
data with the mean and standard deviation of the input streams in the training set.
The architectures and other hyperparameters for each model were as follows.
LSTM WGAN The LSTMs in the generator had 5 layers with hidden size equal to 32,
with 5 dimensional random noise. The LSTMs in the critic had 4 layers with hidden size 32.
The number of parameters of the generator was 77,089, while the number of parameters of
the critic was 59,713.
LSTM Sig-WGAN The generator was the same as in the LSTM WGAN model.
Neural SDE Sig-WGAN The size dz of the Neural SDE was 48. The initial random noise
size dv was 16 and the network ξ2

θ was formed by one hidden layer of size 32. The network ξ1
θ

was simply a linear function.
The initial condition of the SDE was formed by a random part k of size 16 and a deterministic
part dz − k of size 32. The diffusion gθ was chosen to be of diagonal type, and therefore the
dimension of the Wiener process dw was the same as the size of the solution, 48. Both the
drift fθ and diffusion gθ had one hidden layer of width 84. The only activation function we
used was the hyperbolic tangent, tanh. Following Kidger, Foster, Li, Oberhauser, et al., 2021,
we also applied a final tanh to the vector fields. The total number of learnable parameters
was 29,161.
For the LSTM WGAN and the Neural SDE Sig-WGAN models, the batch size was set to
528. Due to memory constrains, for the LSTM Sig-WGAN the batch size was set to 228.

D.2.3 Seattle Weather dataset

The train set was formed by 15,122 pairs of time series data (x, y). The validation set was
formed by 3,781 samples. The test set was formed by 6,468 samples. The test set was
extracted from a different time period than the train and validation sets (out-of-time samples).
We normalized the data with the mean and standard deviation of the input streams in the
training set.
The architectures and other hyperparameters for each model were as follows.
LSTM WGAN The LSTMs in the generator had 5 layers with hidden size equal to 32,
with 5 dimensional random noise. The LSTMs in the critic had 4 layers with hidden size 36.
The number of parameters of the generator was 77,089, while the number of parameters of
the critic was 75,241.
LSTM Sig-WGAN The generator was the same as in the LSTM WGAN model.
Neural SDE Sig-WGAN The architecture was the same as the one we detailed in Section
D.2.2, with the exception that we set the hidden size of the SDE to dz = 64. Just like in
the previous experiment we applied a final tanh to the vector fields of the SDE. The total

28

number of parameters was 35,113.
For the Neural SDE Sig-WGAN models, the batch size was set to 724. For the LSTM WGAN,
it was set to 528. Due to memory constrains, for the LSTM Sig-WGAN the batch size was
set to 228.

D.2.4 Forex dataset

The train set was formed by 15,000 pairs of time series data (x, y). The validation set was
formed by 5,000 samples. The test set was formed by 10,000 samples. The test set was
extracted from a different time period than the train and validation sets (out-of-time samples).
As it is usually done in this kind of datasets, we applied the logarithm transformation to the
data. After that, we normalized the data with the mean and standard deviation of the input
streams in the training set.
The architectures and other hyperparameters for each model were as follows.
LSTM WGAN The architecture of the generator was the same as the one we detailed
in the Seattle Weather dataset experiment. However, in this case the architecture of both
LSTMs of the critic was set to hidden size equal to 32 and a number of layers equal to 5.
The number of parameters of the critic was 234,113.
LSTM Sig-WGAN The generator was the same as in the LSTM WGAN model.
Neural SDE Sig-WGAN The architecture was the same as the one we detailed in the
Seattle Weather dataset experiment.
For the LSTM WGAN and the Neural SDE Sig-WGAN, the batch size was set to 528. Due
to memory constrains, for the LSTM Sig-WGAN the batch size was set to 128.

D.2.5 IBEX35 dataset

The train set was formed by 4,296 pairs of time series data (x, y). The validation set was
formed by 1,074 samples. The test set was formed by 1,944 samples. The test set was
extracted from a different time period than the train and validation sets (out-of-time samples).
We normalized the data with the mean and standard deviation of the input streams in the
training set.
The architectures and other hyperparameters for each model were as follows.
LSTM WGAN The LSTMs in the generator had 2 layers with hidden size equal to 64,
with 5 dimensional random noise. The LSTMs in the critic had 4 layers with hidden size 32.
The number of parameters of the generator was 101,953, while the number of parameters of
the critic was 59,713.
LSTM Sig-WGAN The generator was the same as in the LSTM WGAN model.
Neural SDE Sig-WGAN The size dz of the Neural SDE was 120. The initial random
noise size dv was 16 and the network ξ2

θ was formed by one hidden layer of size 48. The
network ξ1

θ was simply a linear function.

29

The initial condition of the SDE was formed by a random part k of size 56 and a deterministic
part dz − k of size 64. The diffusion gθ was chosen to be of diagonal type, and therefore the
dimension of the Wiener process dw was the same as the size of the solution, 64. Both the
drift fθ and diffusion gθ had one hidden layer of width 96. The only activation function we
used was the hyperbolic tangent, tanh. Just like in the previous experiments we applied a
final tanh to the vector fields of the SDE. The total number of learnable parameters was
73,489.
For the LSTM WGAN and the Neural SDE Sig-WGAN, the batch size was set to 1024. Due
to memory constrains, for the LSTM Sig-WGAN the batch size was set to 528.

D.2.6 IBEX35 & CAC40 dataset

The train set was formed by 4,262 pairs of time series data (x, y). The validation set was
formed by 1,066 samples. The test set was formed by 1,231 samples. The test set was
extracted from a different time period than the train and validation sets (out-of-time samples).
We normalized the data with the mean and standard deviation of the input streams in the
training set.
The architectures and other hyperparameters for each model were as follows.
LSTM WGAN The LSTMs in the generator had 2 layers with hidden size equal to 64,
with 5 dimensional random noise. The LSTMs in the critic had 4 layers with hidden size 32.
The number of parameters of the generator was 102,274, while the number of parameters of
the critic was 59,969.
LSTM Sig-WGAN The generator was the same as in the LSTM WGAN model.
Neural SDE Sig-WGAN The size dz of the Neural SDE was 80. The initial random noise
size dv was 16 and the network ξ2

θ was formed by one hidden layer of size 24. The network ξ1
θ

was simply a linear function.
The initial condition of the SDE was formed by a random part k of size 30 and a deterministic
part dz − k of size 50. The diffusion gθ was chosen to be of diagonal type, and therefore the
dimension of the Wiener process dw was the same as the size of the solution, 80. Both the
drift fθ and diffusion gθ had one hidden layer of width 56. The only activation function we
used was the hyperbolic tangent, tanh. Just like in the previous experiments we applied a
final tanh to the vector fields of the SDE. The total number of learnable parameters was
58,481.
For the LSTM WGAN, the batch size was set to 1024. For the Neural SDE Sig-WGAN, it
was set to 528. Due to memory constrains, for the LSTM Sig-WGAN the batch size was set
to 400.

30

E Computing infrastructure

All experiments were run on a computer that had Windows 11 Home as the operative system,
equipped with an AMD Ryzen 7 5800X 8-Core Processor, 16GB of RAM and an Nvidia
GeForce RTX 3060 with 12GB of memory.
The main python libraries that were used are listed below:

• Pytorch 1.9.0+cu111 as the main deep learning framework (Paszke et al., 2019).

• Signatory 1.2.6, which provides differentiable computations of the signature on the
GPU (Kidger & Lyons, 2021).

• torchsde 0.2.5, which provides stochastic differential equation (SDE) solvers with GPU
support and efficient backpropagation (Li, 2020).

We highlight that, in order to use the Signatory package, one needs to have a Pytorch version
that is no older than 1.9.0.

31

	The signature transform
	Paths of finite p-variation
	The tensor algebra
	Properties of the signature of a path
	The expected signature of a stochastic process

	The Signature-Wasserstein-1 metric
	The Conditional Signature-Wasserstein GAN approach
	Experimental Details
	Architectures for the resources cost analysis
	Architectures and hyperparameters for the experiments
	Common hyperparameters
	AR(p) dataset
	Seattle Weather dataset
	Forex dataset
	IBEX35 dataset
	IBEX35 & CAC40 dataset

	Computing infrastructure

